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Foreword

The ACS Symposium Series was first published in 1974 to provide a
mechanism for publishing symposia quickly in book form. The purpose of
the series is to publish timely, comprehensive books developed from the ACS
sponsored symposia based on current scientific research. Occasionally, books are
developed from symposia sponsored by other organizations when the topic is of
keen interest to the chemistry audience.

Before agreeing to publish a book, the proposed table of contents is reviewed
for appropriate and comprehensive coverage and for interest to the audience. Some
papers may be excluded to better focus the book; others may be added to provide
comprehensiveness. When appropriate, overview or introductory chapters are
added. Drafts of chapters are peer-reviewed prior to final acceptance or rejection,
and manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review papers are
included in the volumes. Verbatim reproductions of previous published papers
are not accepted.

ACS Books Department
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Chapter 1

Ab InitioMolecular Dynamics Investigation of
Xylan Hydrolysis

Haitao Dong and Xianghong Qian*

Department of Mechanical Engineering, Colorado State University,
Fort Collins, Colorado 80523, USA
*xhqian@goku.engr.colostate.edu

Ab initio molecular dynamics (CPMD) coupled with
metadynamics (MTD) simulations were used to investigate the
free-energy surfaces of acid-catalyzed hydrolysis reactions of
xylobiose disaccharide in the gas phase and in aqueous solution.
Water and water structures were found to play a critical role
in the hydrolysis reaction barrier. Proton partial desolvation
associated with its migration to the ether linkage site, the
protonation of the ether bond, and the subsequent breaking of
the C-O bond were found to be the rate-limiting steps. The
significant contribution to the reaction barrier caused by partial
proton desolvation and migration could partially explain the
biphasic phenomenon in xylan hydrolysis and highlight the
importance of mass transport during biomass pretreatment.

Introduction

Cellulosic biomass represents an abundant renewable resource for producing
bio-based products and biofuels. Cellulosic biomass is mainly composed of
hemicelluloses (~15%–32%), cellulose (~30%–50%) and lignin (~15%–25%).
Hemicelluloses (mostly xylan) are natural polymers of β-D-xylose and other
minor sugars, whereas cellulose is made of β-D-glucose. Lignin is a polymer
composed of non-fermentable phenyl-propene monomer units. Both xylose and
glucose sugar monomers are connected via the β-1,4 ether linkage to form xylan
and cellulose, respectively. The typical biochemical platform for converting
biomass to biofuels such as ethanol includes a thermochemical pretreatment step
followed by enzymatic hydrolysis and fermentation.

© 2010 American Chemical Society
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Before enzymatic hydrolysis and fermentation, cellulosic biomass must
be pretreated to hydrolyze hemicelluloses, increase the material porosity, and
render the biomass substrates more susceptible to enzymatic digestion (1).
Thermochemical pretreatment opens up the biomass structure and has long been
recognized as a critical step in producing cellulose with acceptable enzymatic
digestibility (2). Not only is pretreatment the most costly step, it also has a
significant impact on the cost of both prior (e.g., size reduction) and subsequent
(enzymatic hydrolysis and fermentation) operations (3, 4). Various technologies,
including dilute acid (5, 6), alkaline (7, 8), hot water or steam (9, 10), ammonia
fiber explosion (AFEX) (11, 12), and lime (13, 14) pretreatment methods have
been developed to accomplish this goal (15). Dilute sulfuric acid (~0.5%–3.0%
sulfuric acid by weight) is one of the most common and cost-effective agents
used in pretreatment to hydrolyze hemicelluloses and relocate lignin (7, 16–25).
Typically, dilute-acid pretreatment is carried out at an elevated temperature of
430-500K.

During dilute-sulfuric-acid pretreatment, hemicelluloses (mostly xylan)
are hydrolyzed to monomer sugars, the majority of which are β-D-xylose.
During this process, a small amount of β-D-glucoses are also released from
hemicellulose xyloglucan and possibly from cellulose. Depending on the severity
(temperature, acidity, and processing time) of the acid pretreatment, some
xylose and glucose molecules undergo an undesirable degradation process that
lowers the biomass conversion efficiency. 2-Furaldehyde (Furfural) (26–29)
and 5-(hydroxymethyl)-2-furalde (HMF) (27, 28, 30–33) are major degradation
products from xylose and glucose, respectively, in an acidic environment.
Besides these two major products, there are several other degradation products
(48, 50, 53–57). The xylose and glucose molecules could also react with each
other in an acidic environment to form various disaccharides or even oligomers,
particularly at higher sugar concentrations. Sugar yields decrease as temperature
and acidity increase because of acid-catalyzed sugar degradation. However, at
lower temperature and acidity, the processing time is much longer due to the
presence of both fast and slow biphasic xylan de-polymerization reactions (17,
19). So far our understanding of the biphasic phenomenon of xylan hydrolysis
in the complex biomass matrix is very limited. However, laboratory evidence
(34) supports the theory that xylan hydrolysis without the presence of other
biomass components (mainly cellulose and lignin) is fast and does not exhibit
biphasic kinetics. It is postulated that mass transport plays an important role
in xylan hydrolysis. Here, we attempt to understand the reaction-free energy
and barrier for xylan hydrolysis and associated crucial rate-limiting step(s).
Because xylan hydrolysis and sugar degradation/ condensation reactions are
both catalyzed by proton during dilute-acid pretreatment, the knowledge of their
relatively reaction-free energies and reaction barriers is tremendously valuable
for optimizing pretreatment conditions. In this chapter, we focus on the xylan
hydrolysis reaction using β-1,4-linked xylobiose hydrolysis as an example.

The reaction free energy ΔG and the reaction barrier ΔEa are extremely
useful parameters for quantifying a chemical reaction. They determine the
thermodynamic equilibrium constant K, the kinetic reaction rate constant k,
both of which are needed to quantify the xylan hydrolysis, sugar degradation
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and condensation products. For a reversible chemical reaction A + B → C + D,
where A and B are reactants and C and D are products, the relations between
the equilibrium constant K and free energy ΔG, reaction rate constant k, and
activation barrier ΔEa are shown in Equations 1 and 2, respectively. Here, R is
the gas constant and T is the absolute temperature in Kelvin. A is a prefactor
depending on collision frequency.

Equation 2 is the Arrhenius equation. It is an empirical relationship. It is
generally assumed that prefactor A and ΔEa are either not dependent or only
weakly dependent on temperature. The prefactor A can be determined statistically
as well as experimentally by plotting the natural logarithm of measured k with
respect to 1/T.

Chemical reactions are complex dynamical processes involving the breaking
and forming of chemical bonds and the transfer of electrons. Therefore, only
electronic methods based on first-principles quantum calculations are generally
able to describe these processes. The common dynamical methods, such as
classical molecular dynamics (MD) simulations based on solving Newton’s
equation of motion, are unable to describe these chemical and electron transfer
processes. Due to its dynamic nature, the reacting system changes state
dramatically over a relatively short period of time, making static quantum
mechanical computational methods inadequate. Ab initioMD simulation methods
such as CPMD (35) are the leading techniques for investigating chemical
reactions and processes. CPMD is a predictive technique that requires no
empirical parameter and is one of the most accurate available. CPMD unifying
molecular dynamics and density functional theory (36) have been successfully
and extensively applied to investigate water structure, proton transfer processes,
and several chemical reactions (37–51), many of which have been extensively
tested and validated by available experimental data. While many chemical
reactions and processes occur on the time scale of femtoseconds (fs) (10-15 s) to
picoseconds (ps) (10-9 s), a significant number occur on nanoseconds (ns) (10-9
s) or even much longer time scales. Chemical reactions occur when the system
migrates from one local equilibrium minimum to another, overcoming the usually
large energy barriers that separate reagents from products (52). The probability of
such an event occurring spontaneously is inversely related to the exponential of
the reaction energy barrier. Depending on the reaction energy barrier, this process
could easily exceed 50 ps CPU time, which is the limit our current computing
technology can afford.

The typical approach of quantum chemistry to overcome this problem is to
determine the local minima and saddle points on the potential energy surface to
find the possible equilibrium structures and reaction pathways as used in Gaussian
(53). These calculations are computationally very demanding, require much
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insight, and are generally very difficult. During the past few years, a new MTD
method was developed by Parrinello and coworkers (52, 54), based on the ideas of
extended Lagrangian (54–57) and coarse-grained, non-Markovian dynamics (54),
which allow very efficient exploration of the reactive system’s free-energy surface
(FES). It is suitable for implementation in ab initioMD simulation codes and has
been incorporated into CPMD. This MTD method assumes that several collective
coordinates that distinguish reactants from products are able to characterize the
reaction process. These collective coordinates (e.g., distances between atoms and
coordination numbers) must include the relevant modes that cannot be sampled
within the typical time scale of the ab initio MD simulation (~50 ps). This
method is a significant leap forward in simulating chemical reactions and has been
successfully applied to several chemical and biological systems (58–70). In this
work, CPMD-MTD will be used to explore the free-energy surfaces of xylobiose
hydrolysis reactions. The reaction pathways, barriers, and rate constants can also
be determined.

Our earlier work (27–29, 71) demonstrated the unique capability of CPMD
(35, 55) for studying sugar reactions both in the absence and presence of explicit
surrounding water molecules. Our calculations show that water and water
structure play an important role in sugar reaction pathways. Water molecules can
compete with the hydroxyl groups on the sugar ring for a proton. Moreover, water
molecules can extract a proton from the carbocation intermediates to terminate
the reaction. These results suggest that solvent molecules play a crucial role
for both sugar reactions and xylan hydrolysis. Our results show that the size of
the water cluster surrounding the sugar molecule has a significant effect on the
reaction barrier.

Method

Metadynamics is an extended Lagrangian method designed to accelerate
the energy barrier-crossing progress, which has been a major drawback for MD
simulations that are limited in a sub-microsecond time scale (52, 54). The basic
assumption of this method is that the FES depends on n (n << 3N, with N being
the total degrees of freedom of the system) and collective variables (CVs). Here
the ith CV is denoted as Si. For each CV, an auxiliary particle with position si is
coupled to Si, and the modified Lagrangian of the system is:

where the first term on the right side is the original Lagrangian. In our study, it
is governed by the DFT electronic structure calculations in CPMD. The second
term is the kinetic energy of the fictitious particles; the third term is the harmonic
coupling potential between S and s; the last term is a bias potential, which is
dependent on the dynamics of s (will be considered later); andm and k are fictitious
mass and coupling constants for s. If these quantities are carefully chosen so that
the motions of s are much slower than the motions of S, the average force placed
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on s by S through the harmonic coupling is an estimate of the derivative of free
energy A with respect to s,

The angled bracket is the average over all configuration of S.
This formulation of the extended Lagrangian does not guarantee a faster

barrier-crossing process. A repulsive potential V(s) needs to be introduced into
the FES to drive the system in the desired direction of the reaction. Equation
4 provides an estimate of the FES along coordinates of the chosen CVs.
Alternatively, the repulsive potential can conveniently take a Gaussian form

Equation 5 is not meant to be an exact counter to the FES but merely a bias to force
the system to leave the current locations s0 (the Gaussian heightWi is usually a few
percent of the barrier height). The width is controlled by ∆si, which is the average
amplitude of the fluctuation of si. As successive repulsive Gaussian potentials are
added to the FES, the reactant well will be flattened; and the system will have a
much greater chance to cross the energy barrier with its thermal energy. Equation
5 can be further modified with a second Gaussian form to reduce overlapping
between successive additions, but does not lead to a significant improvement (72).

When both the reactant and product wells on the FES are filled up by the
Gaussian potentials, the system can move freely over the configurations along the
reaction pathway. After some fine tuning of the accumulated Gaussian potentials,
the modified FES will be completely flattened. Therefore, the summation of all
the Gaussians added with respect to the CVs is the reverse of the FES of the
underlying chemical or biological process, which determines the free-energy
change and the barrier height for the process. An advantage of this method is that
a good knowledge of the FES does not have to be known a priori, as is required
in umbrella sampling. The MTD progress will self-guide the system to explore
the FES.

The efficiency and accuracy of MTD simulations depend on an optimal
combination of parameters that control the dynamics of CVs, the shape of the
Gaussian potentials, and the speed of the energy-well-filling progress. We
performed a series of test simulations to determine these parameters by following
the guidelines suggested by Ensing et. al (73). The errors of free-energy
estimation using the MTD method are expected to be 1-2 kcal/mol if the
parameters are selected properly (74).
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Results

Protonation of the Ether Linkage in β-1,4-Linked Xylobiose in the Gas
Phase and Comparison with β-1,2-Linked Xylose Disaccharides

The reaction free energies for the protonation processes of the ether linkages
in β-1,4-linked as well as β-1,2-linked xylose disaccharides were initially
investigated in the gas phase. The gas-phase simulations helped us understand
the effects of water and water structure on the hydrolysis reactions of these
disaccharides in solution. Two different linkages were investigated to study
structural and conformational effects on acid-catalyzed hydrolysis.

Scheme 1 shows the two CVs used in the gas-phase calculations. The first CV
(CV1) is the coordination number (CN) of C1 with respect to O1. The equation of
CN is given by:

where dij is the distance between atoms i and j, d0 is the cutoff distance, and the high
powers (p and q) distinguish between the coordinated and non-coordinated states.
The second CV (CV2) is the CN difference of O1 on xylobiose and the O atom in
H3O+ with respect to proton H, respectively. The CV dynamics are controlled by
the force constant k and mass m (see Eq. 3). We used k = 8.0 a.u. and m = 600
a.m.u. for CV1 and k = 3.0 a.u. and m = 100 a.m.u. for CV2. The height and
width of the Gaussian bias potentials were chosen as H = 0.002 a.u. and W = 0.1
a.u. When the first barrier crossing was observed, the value of H was reduced to
0.001 a.u. and was fixed for the rest of the simulations. The bias potentials were
added whenever the CV displacements were larger than 1.5 times the width, but
no shorter than 100 MD steps.

All MD calculations were carried out using the CPMD software package
(35). In these CPMD runs, the Becke, Lee, Yang, and Parr functional was used
to describe the chemically active valence electrons (75, 76). The interactions
between these electrons and the “frozen-cores” were described by the Goedecker
pseudopotentials (77). We used an energy cutoff of 70 Ry for the plane-wave
basis sets, which was shown to be sufficient from our earlier results (28, 71, 78,
79). To effectively separate the electron motions from those of slow-moving
nuclei, we used a fictitious mass of 800 a.m.u. and a time step of 0.125 fs. The
MD simulations were carried out under NVT at 300 K with a Nosé-Hoover chain
thermostat (80). In the gas phase, we decoupled the simulation boxes from their
images using Hockney’s method with an extra 4 Å added to each dimension of
the simulation boxes (81).

Figure 1 shows the two CV trajectories of the ether linkage protonation on β-
1,4-linked xylobiose during theMTD simulations. It shows that the CV1 trajectory
starts approximately from 0.8 and the CV2 from -0.8, indicating the initial reaction
state. The proton quickly moves towards the linkage oxygen and in the first 200
MTD step, the value of CV2 fluctuates between 0.1 and 0.8. Then the proton
transfer is complete, and the C-O bond starts to break. The value of CV1 quickly
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Scheme 1. Protonation of the ether linkage in xylobiose and the selection of two
CVs. (see color insert)

decreased to as low as 0.1. This indicates that the ether linkage is broken, and that
a cyclic carbonium-oxonium ion and a xylose molecule have been formed. This
barrier crossing happens after adding 200 bias potentials. After the initial barrier
crossing, the system stays in the product well on the FES for the next 760 MTD
steps. The second barrier crossing then occurs as CV1 increases back to 0.8 and
CV2 drops to -0.8. In the subsequent MTD steps, this barrier crossing occurs a
few more times, allowing a sufficient sampling.

Figure 2 shows the FES estimated by the CPMD-MTD simulations. There are
two minima located on the FES. The first one is located at CV1 = 0.84 and CV2
= -0.59, corresponding to the reactant state. The second peak is located at CV1
= 0.14 and CV2 = 0.69, representing the product state of the reactions where the
protonation has been completed and the C-O bond in the ether linkage is broken.
The free-energy difference between these locations is -24.1 kcal /mol, which favors
the products. Along the reaction coordinates, the transition state is located at CV1
= 0.84 and CV2 = -0.07, with free energy increasing by 4.2 kcal/mol over the
reactant state. In this transition state, the C-O bond stays linked; and the proton is
approximately at the middle position between the linkage oxygen and the oxygen
in the H3O+. This protonated xylobiose is located on FES at CV1 = 0.81 and CV2
= 0.69. The free-energy increase with respect to the reactant state is 2.2 kcal/mol.
The C-O bond breaking occurs without an energy barrier after the proton transfer.

The two CVs for calculating the FES of the ether linkage protonation in β-1,2-
linked xylose disaccharide are the same as those used for β-1,4-linked xylobiose.
The same values of k andm are used as before. The trajectories of the two CVs and
the constructed FES from CPMD-MTD simulations are shown in Figures 3 and 4,
respectively. The CV trajectories show a slightly different progress in exploring
the reaction pathway. In the first 680 MTD steps, the proton travels back and forth
between the H3O+ oxygen and the linkage oxygen, and the C-O bond remains
bonded. Then, with enough bias potentials added in the reactant well, the system
crosses the energy barrier to enter the product well and stays there for the next 3180
MTD steps. The system stays much longer in the product well than in the earlier
case, suggesting that the FES features may be different between the two cases.
During this period, the proton occasionally goes closely back to theO atom inH3O+

and the C-O bond reforms, but it never has a sustained stay in those positions. After
3860MTD steps, the energy barrier is re-crossed and the values of CV1 can be seen
going back to around 0.8. In the mean time, the value of CV2 starts to decrease
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Figure 1. CV trajectory during the MTD simulations for the protonation of the
ether linkage in β-1,4-linked xylobiose in the gas phase at 300 K. (see color

insert)

Figure 2. The free-energy surface for the protonation of the ether linkage in
β-1,4-linked xylobiose in the gas phase at 300 K. (see color insert)

and fluctuates between -0.8 to 0.8 for the next 1600 MTD steps. Thereafter, CV2
stays in the negative region until it goes up to 0.8 again at MTD step 6560.

Figure 4 shows the FES fromMTD simulations for protonation of β-1,2-linked
disaccharide. This surface again shows two minima. The first minimum is located
at CV1 = 0.90 and CV2 = -0.51, corresponding to the reactant state. The second
is located at CV1 = 0.14 and CV2 = 0.74, corresponding to the product state. The
free-energy difference between these locations is -27.4 kcal/mol compared to -24.1
kcal/mol in the previous case. Along the reaction coordinates, the transition state
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Figure 3. CV trajectories during the metadynamics simulation for the protonation
of the ether linkage in β-1,2-linked xylose disaccharide in the gas phase at 300 K.

(see color insert)

Figure 4. The free-energy surface for the protonation of the ether linkage in
β-1,2-linked xylose disaccharide in the gas phase at 300 K. (see color insert)

is located at CV1 = 0.86 and CV2 = 0.00 showing a free-energy increase of 11.0
kcal/mol with respect to the reactant state. This activation energy is much larger
than the previous case. On the RC, the state of protonated 1,2- xylobiose is located
at CV1 = 0.80 and CV2 = 0.74. The free-energy difference to the reactant state is
6.5 kcal /mol. Again, the C-O bond break occurs without an energy barrier after
completing the proton transfer.
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Figure 5. The two CV trajectories for protonation of the ether linkage in
xylobiose and the subsequent breaking of the C-O bond in water at 300 K during

CPMD-MTD simulations. (see color insert)

Figure 6. Free-energy surface for protonation of the ether linkage in xylobiose
and the subsequent breaking of the C-O bond in water at 300 K from CPMD-MTD

simulations. (see color insert)

Acid-Catalyzed Hydrolysis of β-1,4-Linked Xylobiose in Bulk Water

Acid-catalyzed hydrolysis of xylobiose in water was investigated by studying
the ether linkage protonation and breakage of the C1-O bond in xylobiose.
Sixty-eight water molecules were included in the xylobiose simulation box with
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a corresponding water density of 0.93 g/cm3. In addition, one H3O+ ion and one
counter ion Cl- were introduced into the system to mimic the acidic environment
and to neutralize the charge. Periodic boundary conditions were applied. The
simulations were carried out at 300 K. For MTD simulations, CV1 is chosen to
be the same as that in the gas phase. However, CV2 is slightly different. Here,
CV2 is the coordination number of the O atom on the ether linkage with respect
to one proton on H3O+, as shown in Scheme 1.

Figures 5 and 6 show the trajectories of the reaction coordinates during
CPMD-MTD simulations and the constructed FES, respectively, for protonation
of the ether linkage on β-1,4-xylobiose in aqueous solution at 300 K. Figure 5
shows that it takes more than 500 MTD steps to complete the sampling of the
protonation process. At around 520 MTD steps, the C-O bond starts to break.
The FES shown in Figure 6 exhibits two energy minima. The first one is located
at CV1 = 0.9 and CV2 = 0.1, corresponding to the reactant state where the proton
remains close to the H2O molecule. The second minimum is located at CV1
= 0.1 and CV2 = 0.8, corresponding to the product well where the proton has
been transferred to the ether linkage and the C1–O1 bond is broken. The overall
free-energy change is 7 kcal/mol. The transition state is located at CV1 = 0.8 and
CV2 = 0.8, with a free-energy barrier of 10 kcal/mol over the reactant state.

The reaction barrier of 10 kcal/mol obtained from the current CPMD-MTD
simulations for protonation of the ether linkage and breakage of the C1-O1 bond
is much smaller compared to the experimental value of 30 kcal/mol (82, 83). The
discrepancy between the experimental and calculated reaction barriers can be
explained by taking into account the reaction barrier for partial desolvation of the
hydronium ion as it moves closer to the xylobiose molecule in solution. In this
case, the calculated partial desolvation free energy for a proton is approximately
15-20 kcal/mol (79). The total activation energy for protonation of the ether
linkage and the breaking of the C-O bond during xylobiose hydrolysis is about
25-30 kcal/mol, which is in reasonable agreement with experiments.

Conclusions

The effects of water and water structure on acid-catalyzed xylan hydrolysis
reaction can be inferred by investigating the xylobiose hydrolysis reaction both in
the gas phase and in solution. Water and water structure both play a critical role
in determining the reaction barriers in solution. Proton partial desolvation and its
migration to the ether linkage site, protonation of the ether bond and the subsequent
breaking of the C-O bond is the rate-limiting step. The calculated reaction barrier
is in reasonable agreement with the corresponding experimental value. Because of
the large contribution of proton partial desolvation to the overall reaction barrier,
acid concentration and proton transport will play critical roles in xylan hydrolysis.
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Chapter 2

Simulations of the Structure of Cellulose

James F. Matthews,1,* Michael E. Himmel,1 and John W. Brady2

1Biosciences Center, National Renewable Energy Laboratory, Golden,
CO 80401

2Department of Food Science, Cornell University, Ithaca, NY 14853
*james.matthews@nrel.gov

Cellulose is the homopolymer of (1→4)-β-D-glucose.
The chemical composition of this polymer is simple, but
understanding the conformation and packing of cellulose
molecules is challenging. This chapter describes the structure
of cellulose from the perspective of molecular mechanics
simulations, including conformational analysis of cellobiose
and simulations of hydrated cellulose Iβ with CSFF and
GLYCAM06, two sets of force field parameters developed
specifically for carbohydrates. Many important features
observed in these simulations are sensitive to differences in
force field parameters, giving rise to dramatically different
structures. The structures and properties of non-naturally
occurring cellulose allomorphs (II, III, and IV) are also
discussed.

Introduction

This chapter will describe molecular mechanics simulations of cellulose
structure, starting with an overview of the origin and uses of different cellulose
crystal forms including the chain-packing features that define them. A detailed
examination of cellobiose conformation follows as an introduction to carbohydrate
nomenclature and molecular mechanics simulations. The conformational analysis
of cellobiose illustrates how the behavior observed in simulations depends on
the differences between the force field parameters used, which is also seen in
the cellulose simulations. Last are presented simulations of cellulose Iβ fibrils
in water, which are analysed in terms of hydrogen bonding, conformation of
the exocyclic hydroxymethyl groups, conformation of the glycosidic linkages,

© 2010 American Chemical Society
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and overall shape of the fibrils. A methods section describing the computational
approaches used to conduct this work concludes the chapter.

Uses of Cellulose and Background

As the single largest component of dry biomass, cellulose is one of the most
important molecules on Earth. It is the principal structural polymer in the cell
walls of plants and algae. It can be hydrolyzed into simple sugars to provide
an energy source for bioreactors, primarily fermenters. Cellulose is important
not only because it is abundant, but also because it is renewable, making it an
attractive alternative to petrochemicals and other fossil fuels (1). The enzymatic
hydrolysis of crystalline cellulose is a slow process, primarily because the
polymer is insoluble and difficult to decrystallize (2); but there is also a significant
amount of non-crystalline cellulose in plants. It is not immediately obvious why
the polymer of (1→4)-β-D-glucose is so insoluble, considering that the monomer
unit is one of the most soluble organic compounds known.

Whereas cellulose has a simple chemical composition, determining how
the polymer chains pack together has been a complicated and controversial
subject. Depending on the synthesis conditions and treatment history, seven
different types of crystal packing have been proposed (3). This number does
not include alternative structures for each allomorph, and does not include
chemical modifications or structures containing intercalated small molecules or
ions (4). Some forms are more readily hydrolyzed than others (5, 6). Therefore,
understanding the differences in the structure and surface properties of these
allomorphs may lead to improved enzymatic hydrolysis rates.

Cellulose does not generally occur as a single chain, but rather is synthesized
in close proximity to many other polymer chains, which organize into fibrils
as the fundamental structural unit (7–9). Cellulose oligomers longer than
cellohexaose are almost completely insoluble (2). The glucan chain length
(degree of polymerization, DP) varies from about 2000 to more than 15,000
glucose residues (10). Cellulose can vary from the so-called elementary fibrils
in plants, which contain approximately 36 cellodextrin chains, to the large
microfibrils and macrofibrils of cellulosic algae, which contain more than 1200
chains (11–13). The shape of a cellulose fibril is thought to be determined by the
geometry of the cellulose synthase complex and by the local environment (14).
The seven allomorphs of crystalline cellulose can be separated into two groups
based on the polarity of chain arrangement within the crystal lattice (see Figure
1). Allomorphs with parallel chains are grouped into the cellulose I family, and
allomorphs with neighboring chains arranged anti-parallel are grouped into the
cellulose II family (15).

Natural Cellulose Allomorphs

The cellulose I family includes natural cellulose, which has been shown to
be made up of two different crystal phases: a triclinic form with one chain per
unit cell, designated as Iα, and a lower energy, more stable monoclinic form with
two non-equivalent chains per unit cell, designated as Iβ (16, 17). The Iα form is
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Figure 1. Relationship between chain polarity in cellulose allomorphs. The
cellulose I family on top has parallel chains, while the cellulose II family on

bottom has anti-parallel chains.

more susceptible to hydrolysis. Because all of the hydroxyl groups in cellulose are
equatorial, all of the axial positions are occupied by non-polar (and non-hydrogen-
bonding) aliphatic protons. The sides of the cellulose chain are polar and can form
hydrogen bonds, while the “tops” and “bottoms” are mostly hydrophobic. The
chains can stack in layers defined by hydrogen bonding, with hydrophobic chain
faces meeting between layers. These two crystal forms have similar molecular
conformations and lateral packing (Figure 2), but alternating sheets differ (18, 19).

Whereas the dominant phase in higher plants is the Iβ form and algae contain
a higher proportion of Iα, both phases can coexist along and across the same
fibril (20). Cellulose occurs in the plant cell wall embedded in a matrix of
hemicelluloses and lignin, which, in the biomass conversion process, is disrupted
prior to enzymatic treatment. The newly exposed cellulose fibrils are not well
characterized as to the exact number of chains on each surface, but most of the
fibril surface exposes the hydrophilic sides of the glucose monomers to solution.
These surfaces meet at a corner where the more hydrophobic faces of the glucose
monomers are exposed. Other surfaces may be exposed by mechanical rounding
of corners, or by selective hydrolysis (21). Although these surfaces are not likely
to be a significant portion of the fibril surface area in plants, they may play a
critical role in the activity of fungal cellulases. It has been shown that fungal-type
cellulose binding modules bind specifically to the hydrophobic surfaces of large
Iα crystals (22). Another important structural feature of cellulose from plant
cell walls is the overall fibril shape, which take on a right-handed twist with a
period on the order of hundreds of nanometers (23–25). This twist eliminates the
possibility of a true crystallographic unit cell. Not all native cellulose fibrils are
twisted; wide fibrils such as those from Valonia or Halocynthia are straight (26),
and the relationship between diameter and twist will be explored below.

19

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

2

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 2. Comparison of cellulose Iα and Iβ crystal packing. The packing is
nearly identical in cross section, but the displacement of the hydrogen-bonded
sheets of Iβ are staggered alternately up and down by half a glucose monomer
length, while Iα hydrogen-bonded sheets align on a constant inclined axis. This
relationship allows these crystal forms to be easily inter-converted by thermal

annealing. (see color insert)

Man-Made or Uncommon Cellulose Allomorphs

Cellulose II can be formed by several processes. Treating cellulose I with
alkali while the fibers are under tension is known as mercerization, which is an
important process in the textile industry (1–4). Regenerated cellulose is also
important in the textile industry for producing rayon. Regeneration requires
preparing a solution of cellulose, either with special solvents or by chemical
modification (5). During subsequent precipitation, the chains recrystallize in an
anti-parallel arrangement. Cellulose II is more energetically stable than cellulose
I, and the transformation to anti-parallel chains is irreversible. Cellulose II can be
directly synthesized by some bacteria in confined spaces or at low temperature,
forming a highly corrugated structure with the individual chains folding back upon
themselves, but this is not commonly found in nature (6). While regenerating
anti-parallel chains from solution presents no special conceptual problems and
the folded structure of bacterial cellulose II can be observed, it is not immediately
obvious how conversion from parallel to anti-parallel chains is accomplished
without fiber dissolution during the mercerization process.

Cellulose III can be formed by treating either cellulose I or II with small
nitrogen-containing compounds such as ammonia or ethylenediamine (7–9). The

20

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

2

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 3. Cellulose II (left) and cellulose IIII (right) shown from the edge and
from the end, with hydrogen bonds shown in blue. (see color insert)

resulting structures are either IIII or IIIII depending on the starting material and
cannot be interconverted. Cellulose III has a morphology that is distinctly different
from natural cellulose – with the fibril structure largely disrupted – which imparts
a softer texture to textiles. Cellulose II and IIII are shown in Figure 3.

Cellulose IV can be prepared by heating cellulose III and, likewise, is either
cellulose IVI or IVII depending on the starting material (10–12). Cellulose IVI can
also be formed by regenerating short chains at elevated temperatures (13). It has
recently been suggested that cellulose IVI is not a separate allomorph, but rather
is Iβ with a large amount of lateral disorder (14).

The overarching goal of our research is to improve the efficiency of
cellulase enzymes acting on crystalline celluose, and understanding the structure
and behavior of crystalline cellulose is the first step towards understanding
enzyme/substrate interactions on crystal surfaces. While the simulations presented
in this chapter are small compared to the size of plant cell walls, the behavior
of the model systems presented here should give insight into the structure of
cellulose, starting from the smallest cellulose repeating unit, cellobiose, and
proceeding to larger systems that more closely approximate the structure of
interest, cellulose fibrils in plant cell walls.
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Figure 4. Hydroxymethyl rotamers of β-D-glucose. (see color insert)

Cellobiose

Conformational Energy Mapping

As the disaccharide with the same glycosidic linkage as cellulose, cellobiose
has been studied extensively as a model for cellulose structure (15–19).
Low-energy cellobiose conformations can be expected to give insight into
possible low-energy cellulose conformations, but the immediate environment is
an important factor influencing the shape of cellulose chains. Cellotetraose is the
smallest oligomer that contains a glycosidic linkage connecting monomers that
are not at a chain end and may be a better model than cellobiose for cellulose.
This is an important observation because in cellotetraose the hydroxymethyl
group at the non-reducing end cannot form a strong hydrogen bond between
residues across the glycosidic linkage, and both chain ends are less constrained
than interior residues. Nevertheless, low-energy conformations of the glycosidic
linkage of cellobiose indicate which regions of φ and ψ space is allowed for
cellulose chains. Conformational energy mapping of disaccharide structure has a
long history; and while the parameters, methods, and computational power used
to calculate energies have advanced, the basic idea of finding low-energy regions
of (φ,ψ) space remains the same (20, 21).

As shown in Figure 4, the exocyclic hydroxymethyl group containing C6 and
O6 has three low-energy staggered conformations, which are named GT, GG,
and TG. The first letter in these labels specifies the position of the O6 atom as
either trans or gauche with respect to the O5 atom, and the second letter specifies
its relationship to the C4 atom (see Figure 4). This dihedral angle is called ω
and can be reported as a single number (i.e., ± 60, 180), but it is more precise
to use the two-letter code. Remembering that the first letter always relates to
the ring oxygen, GT, GG, and TG are not ambiguous names when describing
the rotameric state, whereas reporting a numeric value gives no clue as to which
atoms were chosen to define the dihedral angle. Glucose is special among the
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monosaccharides in that the sides of the ring are hydrophilic, and the faces of the
ring are hydrophobic. When in the GT or TG conformation, all hydroxyl groups
are in the same approximate plane, which allows the possibility for the ring faces
to interact via hydrophobic stacking.

The glycosidic linkage of cellobiose can be characterized by consecutive
torsion angles containing C1, the glycosidic oxygen, and C4′. These angles are
φ (H1-C1-O1-C4′) and ψ (C1-O1-C4′-H4′) and are analogous to the backbone
dihedral angles in proteins. Conformational analysis of combinations of φ
and ψ allows us to construct energy maps for disaccharides that are similar
to amino acid Ramachandran plots. These maps show regions of glycosidic
linkage conformation with low potential energy. Cellobiose is synthesized so that
neighboring residues are rotated by approximately 180 degrees relative to each
other. In this conformation, two hydrogen bonds across the glycosidic linkage can
occur: the nearly always present (HO3′-O5) hydrogen bond, and the conditional
(HO6′-O2) hydrogen bond possible only when the reducing-end hydroxymethyl
group is TG or GG. Hydrogen bonds are very important in cellulose structure, and
these particular hydrogen bonds may help stabilize conformations that produce
flat ribbons. However, these hydrogen bonds across the glycosidic linkage are
not symmetrical and, therefore, are not expected to make the underlying energy
landscape symmetrical about the axis of two-fold symmetry.

The mapping procedure reveals low-energy regions in (φ,ψ) space, but the
lowest energy conformation at each point does not necessarily lie on a smooth
transition path between neighboring points. Also, the lowest energy ring shape,
hydroxyl orientation, and hydroxymethyl conformation at each (φ,ψ) point may
not be the same for different parameter sets. This chapter will explore cellobiose
conformations in vacuum with adiabatic potential energy maps, where the energy
at each (φ,ψ) point is obtained by minimizing the potential energy of many
independent starting conformations while allowing each atom to move without
restraints, except on the glycosidic dihedral angles. This chapter will also explore
crystalline cellobiose structures using the CSFF and GLYCAM06 force fields,
two additive force fields developed for carbohydrates.

Cellulose is synthesized from monomers of UDP-glucose, but cellulose
synthase enzymes have two binding sites that are assumed to be rotated relative
to each other by 180° (22–25). This geometry of the synthase active site makes
the monomers in the growing cellulose chain alternate the direction of each
hydroxymethyl group point. This arrangement, with near two-fold symmetry
along with the stereochemistry of the glycosidic linkage, makes a nearly flat chain
shape possible.

There is no experimental way to generate a conformational energy map, but
nearly all observed small-molecule cellulose analog crystal structures are observed
to have glycosidic linkage angles that fall near low-energy regions in the calculated
maps (26). To a close approximation for cellobiose, the line connecting points with
φ + ψ = 0 is the line of two-fold helical symmetry. Changes in ring shape allow
small deviations away from this line to also have two-fold symmetry. There is a
small low-energy region through which this line passes, but for most calculated
maps this line does not coincide with a minimum on the energy surface. Previous
studies of cellobiose conformations have described two low-energy regions in the
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center of the map that are just to either side of the two-fold helical axis and two
additional wells near the fringes of the map (17). In the absence of water, the
global minimum energy is near φ = 180 and ψ = 0. This unexpected global low-
energy region is caused by a concerted intramolecular hydrogen bond pattern with
all hydroxyl groups in a single, unbroken head-to-tail arrangement. It is unlikely
that this hydrogen bond pattern persists in solution, and upon adding one to four
hydrating water molecules that interrupt this pattern, this region is no longer lower
in energy than the central regions (27, 28).

Figure 5. Adiabatic potential energy maps for the CSFF and GLYCAM06 force
fields, on a 10-degree grid. Energy is in kcal/mol above global minimum for each

map. Two-fold helical axis is drawn on the diagonal. (see color insert)

Figure 5 displays the adiabatic potential energymaps for cellobiose in vacuum
using the CSFF and GLYCAM06 force fields. This discussion will focus on the
central region of the maps, the region relevant to native cellulose structure. It
should be noted that this vacuum map does not necessarily correspond to the map
that would be applicable in solution or in a crystalline environment. However,
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these maps are useful as a first approximation to the allowed conformations of
cellulose chains, and for examining preferred internal hydrogen bonding and
hydroxymethyl rotamers at all conformations of the glycosidic linkage. The
contour lines in the maps are spaced by 1 kcal/mol up to 12 kcal/mol above the
global minimum. Both maps have the same general outline, but the locations
of the minima differ in interesting ways. CSFF has minima on both sides of
the two-fold axis, and GLYCAM06 has one minimum on the right-handed
side, and one minimum just to the left-handed side of the two-fold axis. A
survey of the glycosidic linkages of small-molecule cellulose analogs shows
that most conformations have left-handed departures from the two-fold axis.
Slight left-handed departures from the two-fold axis favor the formation of the
HO3-O5′ hydrogen bond, and slight right-handed departures can bring O6 of
the reducing end within hydrogen bonding distance of O2′ on the non-reducing
end. An aqueous free-energy map for cellobiose has been calculated for the
CSFF force field, and the location of the free-energy minimum in solution is on
the left-handed side of the two-fold axis, the opposite handedness of the favored
conformation in vacuum.

Conformations near the center (0,0) of these maps have the glucose monomers
“flipped” by approximately 180° relative to each other; that is, when hydrogen
atoms attached to C1 and C4′ across the glycosidic linkage are eclipsed, the
hydroxymethyl groups point in opposite directions. For example, a left-handed
twist of 5° away from a two-fold helix means neighboring residues are flipped
by -175°, whereas a right-handed twist of the same amount means neighboring
residues are flipped by +175°. The region of left-handed twist on these maps is to
the right of the two-fold helical axis, and right-handed twist is to the left of the
two-fold axis.

Figure 6 contains nine vacuum adiabatic potential energy maps corresponding
to the nine possible combinations of hydroxymethyl rotamers for cellobiose for
both the CSFF and GLYCAM06 force fields. Each column has the same rotamer at
the reducing end, and each row has the same rotamer at the non-reducing end. The
maps in Figure 5 contain the overall lowest energy for each (φ,ψ) point, but these
maps do not give information about the hydroxymethyl conformations at these
(φ,ψ) points. Breaking the maps into components by hydroxymethyl conformation
shows an important difference in behavior between CSFF and GLYCAM06.
The CSFF map is denominated by the conformation of hydroxymethyl groups,
with the GG,GG map being nearly indistinguishable from the overall map.
The GLYCAM06 maps are dramatically different depending on hydroxymethyl
conformations, with low-energy regions where good intramolecular hydrogen
bonds are possible. Figure 7 shows the lowest energy conformation from the
central region of the nine maps for the GLYCAM06 force field. Again, this is
ignoring “flipped” conformations from the edges of these vacuum maps that
are not significantly populated in native cellulose. Hydrogen bonds across the
glycosidic linkage are possible for certain conformations of the reducing-end
hydroxymethyl group. The GG or TG conformations at the reducing end bring
the O2 and O6 hydroxyl groups within hydrogen bond distance, but the GT
conformation at the reducing end makes a hydrogen bond across this side of the
linkage geometrically impossible.

25

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

2

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 6. Maps for the nine cellobiose hydroxymethyl combinations using
the CSFF and GLYCAM06 forcefields. Each map has the same range as the
maps in Figure 5. Energy is in kcal/mol above the global minimum. Columns
have the same hydroxymethyl rotameric state at the reducing end, rows at the

non-reducing end. (see color insert)

The potential energy difference between the lowest energy hydroxymethyl
conformations for each point with GLYCAM06 is on the order of 3.5 kcal/mol,
whereas with CSFF the energy difference between conformers is on the order of
7 kcal/mol. This magnitude is significant, because hydrogen bond energies are
on the order of 6 kcal/mol, making hydrogen bond energy contributions more
important than hydroxymethyl rotamers for GLYCAM06, and less important for
CSFF.
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Figure 7. Lowest energy conformation in the central region of the maps in Figure
6 for the GLYCAM06 force field. (see color insert)
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Figure 8. Lowest energy conformations for cellobiose at the φ,ψ point (30°,-30°)
for the CSFF (left) and GLYCAM06 (right) forcefields. (see color insert)

Table 1. Energy in kcal/mol of cellobiose at the φ,ψ point (30°,-30°) with
CSFF and GLYCAM06. Each entry in the table has been rescaled to the
minimum at this φ,ψ by subtracting the amount to the right of the force
field name. Columns have the same hydroxymethyl rotameric state at the

reducing end, rows at the non-reducing end

CSFF 7.73

GT GG TG

4.07 1.17 4.30 GT

1.60 0.00 2.36 GG

4.39 2.38 4.98 TG

GLYCAM06 4.94

GT GG TG

3.18 1.97 0.91 GT

3.33 2.13 1.07 GG

1.92 1.16 0.00 TG

The (φ,ψ) points on the two-fold helical axis are a region of interest to the
cellulose structure. On these maps, a point near the conformation determined for
crystalline cellulose is (30°, -30°). This point is not a local energy minimum for
either CSFF or GLYCAM06, which indicates that crystal structures with glycosi-
dic linkages in this region may favor these conformations due to crystal packing
interactions. Figure 8 shows the lowest energy conformers, and Table 1 contains
the relative energy for the nine combinations of hydroxymethyl rotamers at the
point (30°, -30°) for CSFF and GLYCAM06. The energies have been normal-
ized for each force field relative to the lowest energy at this (φ,ψ) point, which
is shown at the top of the table. It can be seen that the lowest energy conformer
for GLYCAM06 has both hydroxymethyl groups TG, which is interesting because
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Table 2. Unit cell parameters for cellobiose crystal

cellobiose Expt. crystal CSFF GLYCAM06

A 10.972 10.939 10.992

B 13.048 13.478 13.469

C 5.091 5.211 4.985

gamma 90.83 90.25 92.12

volume 728.76 768.28 737.53

this is the same conformation found in cellulose I, but in relatively few other crys-
tal structures. This structure was also found to be low in energy in the absence of
water using density functional theory.

Cellobiose Crystal

As a tool to examine the correctness of force field parameters, adiabatic
vacuum maps are of limited use because the information is not directly accessible
to experiment. High-level ab initio calculations have been used to study several
cellobiose conformations, but adding a small number of water molecules changes
which conformations are lowest in energy; and these calculations are currently
too computationally expensive to do a comprehensive mapping study. Density
functional theory has been used to map a sparse subset of cellobiose (φ,ψ)
space, but it is unclear if the results would be unchanged with a more complete
treatment of electronic structure (29). Combined solid-phase crystallographic
and spectroscopic data from small molecules are best suited for comparing
conformational properties and are available for cellobiose (30, 31).

Cellobiose crystallizes into a monoclinic unit cell with P21 symmetry that
contains two molecules. A periodic crystal of cellobiose consisting of 3x3x8
primitive unit cells was constructed using the CSFF and GLYCAM06 forcefields.
The average unit cell parameters after 1 ns of dynamics at 300 K are in Table 2.
The unit cell volume in the solid state is most closely related to the van der Waals
(VDW) parameters. These parameters are generally chosen to reproduce solution
properties, and it is neither practical nor desirable to create new parameters
for solid-state simulations. The VDW parameters for CSFF were chosen from
analogous atom types in the CHARMM protein force field, so it is not entirely
surprising that the unit cell volume of cellobiose is not ideal.

The average bond lengths and internal coordinates from the simulations are
given in Table 3. Both the CSFF and GLYCAM06 force fields have average φ
values that differ from the crystal structure values by ~7°. Solid state nuclear
magnetic resonance (NMR) studies of crystalline cellobiose show that there are
few transitions in hydroxyl and hydroxymethyl conformation at 300 K, and both
CSFF and GLYCAM06 reproduce this observation. Average bond lengths for
GLYCAM06 are generally 0.01-0.02 Å longer than bond lengths using CSFF,
but for GLYCAM the VDW radii are smaller by a similar amount (see Chapter
7 on hydrogen bonding). These small differences in VDW and bond length
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Table 3. Internal coordinates for cellobiose crystal

Expt. crystal CSFF GLYCAM06

Φ 45.67 39.02 38.54

ψ -17.05 -16.22 -18.83

glycosidic angle 116.09 116.97 116.62

sum of ring bonds 8.97 8.90 9.09

ave C-OH 1.41 1.41 1.43

chi RE 70.52 59.60 66.52

chi NR 48.70 39.85 53.55

Figure 9. Left: the cellulose Iβ crystal unit cell determined by fiber diffraction;
right: the trajectory-averaged unit cell for the simulation of the diagonal crystal.
Hydrogen atoms are omitted for clarity and positions obtained by symmetry

operations are transparent. (see color insert)

parameters, along with different partial atomic charges, angle bending constants,
and rotational barriers makes isolating the cause of different conformational
preferences in molecules the size of cellobiose difficult. The challenge is greater
for larger molecules such as cellulose, and harder still for aggregates or crystals
of polymers.
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Crystal Structure Reorganization

The discussion following this paragraph describes the results of the 1-ns
cellulose Iβ simulations using the CSFF force field published in 2006 (32).
Yui and coworkers submitted results of very similar simulations of hydrated
microcrystalline cellulose Iβ with GLYCAM04 at the same time as ours, but their
paper was published later (33). The different parameters used in the two papers
gave very similar results in terms of overall structure shape, but GLYCAM04
more closely reproduced the expected hydroxymethyl and hydrogen bond
conformations. To enable a more thorough comparison of the structures produced
with the two parameter sets, 10-ns simulations of the diagonal crystal were run
with both CSFF and GLYCAM06. To explore the effect of chain length and
diameter on the fibril structure, hydrated DP 40 diagonal crystals with either 36
or 16 chains were built and run for 3 ns with both CSFF and GLYCAM06. These
simulations will be presented following the results of the previously published
work.

One ns Simulation with CSFF

The starting structure for the cellulose crystal was built up from the
hypothetical crystal conformation deduced from fiber diffraction studies.
However, during the course of the simulations, several structural fluctuations and
changes occurred. In simulating the diagonal crystal, the rms difference between
the instantaneous structure and the starting crystal structure, averaged over the
simulation, was 1.46 Å; while for the square crystal simulation, the rms difference
was 1.72 Å. Over the length of the simulations, the average unit cell dimensions
shifted away from those reported in the diffraction study. These dimensions varied
with position in the crystal, relative to the surfaces and the chain termini. Average
values were calculated for the three cellobiose units in the middle of the chains,
for the three middle chains of the middle three layers of the diagonal crystal (that
is, the central core of the crystal). The results, averaged over these cellobiose
units, are summarized in Figure 9 and compared to the crystallographic unit cell.
As can be seen, in the simulation the crystal underwent an expansion that saw the
value of the lattice constant a increase from 7.784 to 8.470 Å, while the b value
decreased slightly from 8.201 to 8.112 Å. The c value expanded significantly,
from 10.380 to 10.512 Å. In addition, the γ angle decreased from 96.5° to almost
orthogonal, γ ~90°. Reported unit cell dimensions for cellulose Iβ vary depending
on the source material and expand anisotropically upon heating. However, the
unit cell a-axis (corresponding to the distance between hydrogen bonded sheets)
in this simulation is too different to be considered a good fit to the experimental
measurements for cellulose Iβ, as is the “monoclinic” angle near 90°.

These unit cell parameters do compare favorably with those determined from
the crystallographic equatorial d-spacings reported for cellulose IVI (a = 8.02 Å, b
= 8.43 Å, γ = 90°). While it was previously believed that cellulose IVIwas a unique
allomorph, the experimental data currently available from diffraction, NMR, and
FTIR suggests that cellulose IVI can also be regarded as disordered cellulose Iβ.
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Figure 10. Single frames from the center chain layers illustrating three different
hydrogen bond patterns. Left: similar to the predominant pattern from the crystal
structure, but the rotation to GG makes the HO2-O6 hydrogen bond across the
glycosidic linkage impossible; center: hydrogen bond pattern very similar to the
less-occupied pattern from the crystal structure; right: hydrogen bonds from
HO6 in a center chain to O2 in an origin layer chain, which is not shown for

clarity (see Figure 12). These three patterns interchange very rapidly and are not
mutually exclusive, meaning concerted motion of hydroxyl hydrogen atoms is not

required to change the local hydrogen bond pattern. (see color insert)

Another extremely significant change in the crystal structure that occurred
during the simulations is that many of the C6 primary alcohol groups underwent
rotational transitions away from the conformation reported for the diffraction
structure. In the Iβ diffraction structure, all primary alcohol groups are in the
TG conformation. In this conformation, the exocyclic hydroxyl group can make
hydrogen bonds along the chain or to adjacent chains in the same layer, but
no hydrogen bonds between layers. For those crystal layers made up of the
origin chains, there was little structure change in the molecular dynamic (MD)
simulation from that of the diffraction structure; and the hydrogen bonding pattern
remained the same. This result is remarkably similar to the reported experimental
hydrogen bond network in origin chains, where the O2 hydroxyl group was
refined to just one of the two possible hydrogen bond positions.

However, in the MD simulations, in every other layer in the interior of the
crystal, made up of the center chains in the diffraction structure, this primary
alcohol group rotated from the starting TG conformation to the GG position.
The transitions occurred randomly, and were not unidirectional or permanent;
rare transitions back or to the GT conformation also occurred. On average, these
transitions brought all of the residues in the center chain layers into the GG
conformation. In contrast, the layers made up of origin chains remained in their
original TG conformations.
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Figure 11. End views of the final structures of the two crystallites, colored to
indicate the dominant primary alcohol conformations for the sugar rings in
each chain. Surface molecules generally explored two rotameric states with
the color here chosen to represent the more predominant conformation. The
top panels show glucosyl residues with primary alcohols pointing to the right,
and the bottom panels show the next glucosyl residue along the chain which is
flipped by ~180°. The regions enclosed by the grey boxes indicate that these
primary alcohol conformations are nearly constant, and represent the interior

of the fibril. (see color insert)

In this GG conformation, three rapidly interchanging hydrogen bond patterns
were possible, as shown in Figure 10. One of these patterns allowed hydrogen
bonding between layers, which was not possible when the hydroxymethyl groups
were in the TG conformation. On the surfaces, where the sugar monomers were
in direct contact with water, the hydrogen bonds to the freely diffusing water
molecules helped introduce considerable disorder into these primary alcohol
conformations and promoted frequent transitions, but the interior portions of the
crystal developed a clear alternating pattern of hydroxymethyl conformations
between the center and origin layers. Primary alcohol groups in surface chains
alternate between facing towards the interior and facing the solvent; and the
conformation of these surface groups corresponds to the local environment.
Figure 11 shows a trajectory-averaged picture of hydroxymethyl conformations
according to location within the fibril. The chains are colored according to the
key at the bottom of the figure, with the color determined by the predominant
conformation. The top two panels show hydroxymethyl groups pointing to the
right, while the bottom two panels show hydroxymethyl groups pointing to the
left. Interior monomer units showed only rare transitions away from the GG
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Figure 12. Hydrogen bonds between layers in the diagonal crystal. These
hydrogen bonds are possible because of GG conformations in the center layer.

(see color insert)

conformer in center chains and no transitions from TG in origin chains. Both
inward- and outward-facing primary alcohol groups in surface chains showed
much more diversity, sometimes exchanging between two conformations four
or five times during the 1-ns simulation. As a result, there are some differences
between the (110) and (1-10) surfaces on opposite sides of the diagonal crystal.
Heiner and coworkers also found primary alcohol conformational changes in the
layers adjacent to water (34–37). Residues in their simulations were found to
rotate to the GT conformation in the surface layers as was found here. Several
NMR studies have determined that the conformations of surface cellulose chains
are different from the interior and, as in the present simulation, contain both GG
and GT rotamers. This analysis has ignored the conformation of the four glucose
units at each end of the chains, as the ends show greater disorder and swelling
than does the interior. Both ends of the fibrils swelled enough to allow some
water molecules to sit between layers, but water did not penetrate significantly
into the interior.

In the GG conformation, the primary alcohol groups are essentially
perpendicular to the average planes of the sugar rings and, as a result, are pointing
up and down toward the origin chains of the layers above and below. In this
conformation, the exocyclic groups can make good O6-O2 hydrogen bonds
between layers, as is illustrated in Figure 12. Because under normal conditions
cellulose apparently exhibits no tendency for layers to slip relative to one another
experimentally, the existence of such stabilizing hydrogen bonds may not seem
so implausible. However, in this conformation, steric clashes between these
center-chain primary alcohol groups and the origin layers above and below force
the center chains to tilt significantly with respect to the plane of their own layer
(illustrated in Figure 12).
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Figure 13. Time series from the heating and equilibration period of the 10-ns Iβ
simulation with CSFF. Top to bottom twist (top left in red), middle plane twist
(top right in green), monoclinic angle (bottom left in black), and hydroxymethyl

conformation along two origin chains (bottom right). (see color insert)

Ten ns Simulations of the Diagonal Crystal and DP 40 Crystals

During the repeat of the previous CSFF diagonal simulation that was extended
to 10 ns, several unexpected changes in structure occurred. The hydroxymethyl
groups in the origin layers rotated to GT in the interior of the crystal, with the
transitions progressing from the non-reducing end. A regular three-dimensional
hydrogen bond pattern developed, involving both center and origin chains as
proton donors. The hydrogen bond pattern in the center chains settled almost
exclusively into the third pattern described previously, where O6 in a center chain
donates a proton to O2 in an origin chain in the next layer. Origin chain O6
accepts a proton from O2 in a neighboring origin chain, and donates a proton to
the glycosidic oxygen in a center chain. The non-reducing end hydroxymethyl
is not part of a cooperative hydrogen bond network and is free to rotate to the
lower-energy GT conformation. Each transition to GT forms a hydrogen bond
between two origin chains from O6 to O2, destabilizing the previously present
(TG) O6 to O2 hydrogen bond along a single chain. This destabilization causes
transitions in alternating hydroxymethyl groups in neighboring chains, and it also
occurs in concert with the chain tilt.
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Figure 14. End view of Iβ crystals colored as in Figure 11 for CSFF and
GLYCAM06 after 10 ns. (see color insert)

The average unit cell over the 10-ns, DP 14 simulation with CSFF has P21
symmetry with two chains per unit cell, each containing a single anhydroglucose
monomer as the asymmetric unit. The unit cell is also monoclinic, with an angle
of 96.97°. In this unit cell, the origin chains are tilted relative to each other,
in a direction opposite to the tilted center chains. This packing with tilting in
opposite directions in alternate layers is similar to the packing of mannan I and
high-temperature chitosan. Because of this tilt, the origin chains no longer form
an isolated sheet but interact with the layers above and below. Figure 13 (top
left) shows a time series of the twist of a single origin layer during the heating
and equilibration period. Figure 13 (top right) shows a time series of the angle
between the top and bottom single chain “layers” in the crystal. Figure 13 (bottom
left) shows a time series of the monoclinic angle measured at the midpoint of the
crystal’s interior. The monoclinic angle starts at the crystallographic 96.5°, and
after a brief deviation towards 100° during the heating period, transitions rapidly
to the previously reported orthogonal unit cell, followed by a slower return to the
monoclinic unit cell over the equilibration period. The time evolution of the sheet
twist is similar to the twist between the top and bottom chains. Figure 13 (bottom
right) shows a time series of hydroxymethyl orientation along one pair of origin
chains, with the non-reducing end at the bottom and the reducing end on top. The
hydroxymethyl groups involved in this transition are on two chains, distinguished
by the alternating red and blue colors in this graph. The transitions to GT progress
in succession from the non-reducing end to the reducing end. The transition to
the GT conformer forms a hydrogen bond from O6 to O2 in a neighboring chain,
disrupting the previous hydrogen bond pattern across the linkage involving a TG
conformation on the reducing end. This disruption allows the TG hydroxymethyl
group to rotate, forming an intermolecular hydrogen bond back to the first chain,
and causing a similar disruption and propagating the transition to GT.
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Figure 15. φ,ψ conformation of all glycosidic linkages along a single origin
chain from the middle of the DP 40, 36-chain crystals. (see color insert)

It is difficult to determine whether it is the chain tilting, the primary alcohol
conformation changes, or a combination of both that initially causes the untwisting
to occur; but it is clear that an extensive three-dimensional hydrogen bond pattern
rules out the possibility of twist. The only difference in simulation protocol
between the initial 1-ns simulations with CSFF and the 10-ns simulation reported
here is in the treatment of electrostatic interactions. In this longer simulation,
the particle mesh Ewald method is used, which is equivalent to using an infinite
cutoff, whereas the earler simulations ignored interactions more than 13 Å away.
It is expected that either the change in treatment of electrostatics or the longer
simulation time made these transitions more likely to happen, but with the CSFF
force field this pattern is lower in energy than the previously reported pattern.

The GLYCAM06 force field reproduced the hydroxymethyl conformation
and hydrogen bond pattern proposed from diffraction studies, but unit cell
dimensions do not match exactly. The fiber axis (c) is 10.79 Å, much longer than
the experimental value of 10.38 Å. This dimension includes mostly through-bond
interactions, and the extra length comes from a combination of longer bonds
and wider angles spread throughout the anhydrocellobiose repeat units. Figure
14 shows the DP 40, 36-chain fibrils of CSFF and GLYCAM06 with residues
colored by hydroxymethyl conformation after 3 ns of dynamics. The interior of
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the GLYCAM06 crystal remains as a stable unchanging unit, with surface chains
more free to move. CSFF shows more dynamic behavior in the interior, with
occasional transitions from GT back to TG in the origin layers. The transitions
to the GG and GT conformations in the CSFF simulations are not surprising
because when using this force field, the TG conformation is the highest-energy
conformation for the isolated glucose residue in solution, which agrees with NMR
experiments. The TG conformation is high energy in single cellulose chains and
in the glucose crystal, so the transitions are the result of the cellulose crystal
gradually annealing to lower energy states.

Figure 15 shows the φ and ψ conformation of all glycosidic linkages along a
single origin chain from the middle of the DP 40, 36-chain crystal with CSFF and
GLYCAM06. The graph is superimposed on the adiabatic potential energy surface
for cellobiose in vacuum for each parameter set. Lines connect neighboring
linkages, with lighter colors towards the non-reducing end, and darker colors
towards the reducing end. Lines parallel to the two-fold helical axis (top left to
bottom right diagonal) connect linkages with different phi and psi values but have
the same handedness of twist. Lines along the opposite diagonal (bottom left to
top right) connect linkages that alternate left- and right-handed twist. Even for
CSFF that has a saddle point in this region, most of the conformations are near the
two-fold axis, with the chain ends less constrained. This is the result of hydrogen
bonding between chains, which frustrates the preference of individual linkages in
isolated chains to take on conformations away from the two-fold axis.

Figures 16 and 17 show similar glycosidic linkage conformation plots for each
of the 36 chains in the DP 40 crystals with the CSFF and GLYCAM06 force
fields, respectively. The range of each plot is identical to those in Figure 15.
There is a wider range of (φ,ψ) space explored by the surface chains, and chain
ends also tend to take on conformations away from the two-fold axis. It is not
immediately obvious from these plots which crystal is twisted, but over the course
of the simulation, each linkage alternates between left- and right-handed twist,
with chains in the core of the crystal restrained by packing to remain close to a
two-fold helical conformation.

The unit cell of cellulose IVI, measured in primary cell walls or after chemical
treatments, is similar to the unit cell observed with CSFF in the previously
published paper (11, 32, 38). Gardiner and Sarko published coordinates for
cellulose IVI, but the data was very limited. This structure is identical to Iβ
in terms of how the hydrogen-bonded sheets are stacked; but the unit cell is
orthogonal and the distance between layers is larger. A crystal very similar to
the diagonal crystal was constructed with these cellulose IVI coordinates and
was run with CSFF and GLYCAM06 for 5 ns. The structure for CSFF using
cellulose IVI as the starting coordinates was indistinguishable from the structure
found when starting from Iβ coordinates, as may be expected because of the
structural changes described previously. However, GLYCAM06, when started in
the cellulose IVI structure, does not behave as when the starting coordinates are
cellulose Iβ. Remarkably, the behavior is similar to CSFF, where center chains
are GG and origin chains are GT. There are still segments where the original TG
conformation remains in both the center and origin layers, but the spontaneous
conformation change with parameters that can reproduce the Iβ structure suggests
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Figure 16. φ and ψ conformation of all glycosidic linkages along all chains from
the DP 40, 36-chain crystal with CSFF. (see color insert)

Figure 17. φ and ψ conformation of all glycosidic linkages along all chains from
the DP 40, 36-chain crystal with GLYCAM06. (see color insert)

39

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

2

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 18. The trajectory average after 1 ns of the CSFF diagonal crystal, with a
section of the crystal’s central plane seen from above and the side, illustrating
the twist that developed during the simulation. The numbers give the twist angle
in degrees for each dihedral angle defined by four C1 atoms, as at the ends of

the black lines shown on the left. (see color insert)

the CSFF structure is not caused by significant problems in parameters. Rather,
the convergent behavior of two unrelated parameter sets, when started from the
poorly resolved cellulose IVI coordinates, suggests this may be a pattern that
exists under certain conditions. The energy of this structure with GLYCAM06 is
higher than the energy of the structure when started with the Iβ coordinates, but it
seems this is a local minimum.

The most recent cellulose IVI study (14) was conducted on highly crystalline
materials, which enabled the collection of many spots in the diffraction patterns
at each step of the transformation process from Iβ to cellulose IIII to cellulose
IVI. Observed unit-cell parameters similar to the ones proposed here have only
been collected from less-crystalline, small-diameter materials. It is most likely that
cellulose IVI is a high-energy, high-temperature form of cellulose Iβ that becomes
kinetically trapped in an intermediate state. The unusual cooperative hydrogen
bond patterns present in Iβ may not be well reproduced with fixed-charge force
fields, making the conversion to a “high temperature” structure possible without
heating.

The conformation of the hydroxymethyl groups in origin layers is GT, and
combined with the tilting of the chains, this structure is almost identical to a single
layer of cellulose II. Raman spectroscopy indicates that cellulose IVI is composed
of equal parts of cellulose I and cellulose II (13), which is somewhat similar to the
structures produced with the CSFF force field.

Hydrogen Bonding and Twist in Cellulose Fibrils
Probably the most significant change that occurred in the cellulose during the

simulations is the development of twist. Figure 18 illustrates this twist for the
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Figure 19. The trajectory average of the diagonal crystal after 10 ns with the
CSFF (left) and GLYCAM06 (right) force fields. There is almost no twist in the
CSFF structure, and a regular twist in the GLYCAM06 structure. (see color

insert)

Iβ diagonal crystal with CSFF after 1 ns, with the middle hydrogen-bonded sheet
shown in detail. In this figure, the average twist angle for each anhydrocellobiose
repeat unit is shown. These angles are defined as the dihedral angle for the four
C1 carbon atoms illustrated as joined by the dark lines in the figure. Although this
angle varies considerably near the non-reducing end, apparently caused by edge
effects, the twist in the middle of the chain is fairly constant at around 1.4-1.7° per
linkage, with an overall twist for this short oligosaccharide segment of almost 9.9°,
calculated from the first and last rows (which includes considerable irregularity
because of the highly frayed structure of the non-reducing ends).

As mentioned, in the 10-ns simulation of the Iβ diagonal simulation with
CSFF, the twist went away as the simulation progressed. This untwisting is a
direct result of the development of the regular three-dimensional hydrogen bond
pattern. For inelastic twisted sheets to pack as close as possible to each other,
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Figure 20. Hydrogen bonds in the interior of the DP 40, 36-chain crystal, CSFF
on left, GLYCAM06 on right. The GLYCAM06 picture shows only the central
10 residues to make the layer structure visible, due to twist obscuring this view

when all residues are shown.

the long axis of the sheets must be rotated relative to each other. That is to say,
if the chains in a sheet are aligned at every point with chains in neighboring
layers, the sheets cannot be twisted. This notion is similar to the rotation of the
director in chiral nematic liquid crystals. Figure 19 shows the average structure
of the 10-ns simulation for both CSFF and GLYCAM06 from the top and from
the ends. One chain in the middle of each center layer is colored to highlight the
rotation of the molecular axis between layers in the twisted structure. On the left
(CSFF), the highlighted chains align almost exactly along the length of the fibril.
However, in the twisted GLYCAM06 structure on the right, the chain axis in each
layer is rotated relative to the layer above it. Slip between layers is possible in
GLYCAM06 only because the hydrogen-bond pattern is mostly two dimensional,
with very few transient hydrogen bonds between layers. Figure 20 shows just the
hydrogen bonds present in a cross section of the DP 40, 36-chain Iβ crystals with
CSFF and GLYCAM06 after 3 ns of dynamics. There is a drastic difference, with
a regular three-dimensional hydrogen bond lattice along the entire length of the
CSFF crystal and only brief transitions away from the pattern of two-dimensional,
hydrogen-bonded sheets in the GLYCAM06 crystal.

Scatter plots of all hydrogen bonds present in the cellulose Iβ DP 40, 36-
chain simulations are shown in Figure 21. Both plots show the same information,
just exchanging which dataset is displayed on top of the other. Hydrogen bonds
are usually defined as having the electronegative donor and acceptor atoms less
than 3.4 Å apart and with a D-H—A angle of greater than 120°. To show the
many interactions in these crystals that do not quite meet the definition of hydrogen
bonds, D-H—A angles greater than 100° and distances up to 4 Å are shown. The
internal structure of these crystals differ greatly, but the overall distribution of
hydrogen bonds is similar. The distribution of GLYCAM06 hydrogen bonds shifts
slightly towards shorter distances and higher angles.
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Figure 21. Scatter plot of the hydrogen bonds in Figure 20, with CSFF in green
and GLYCAM06 in purple. These structures are very different, but there is no

obvious difference in hydrogen-bond geometry. (see color insert)

A hydrogen bond is a short-range, angularly dependent interaction between a
small electronegative donor atom (such as oxygen, nitrogen, or fluorine) that has
covalently a bonded hydrogen atom and an electronegative acceptor atom. This
interaction is mostly polar, but there is a partial covalent character that is strongest
when the donor-hydrogen—acceptor angle is nearly linear (D-H—A = 180°). The
hydrogen bonds in the proposed structures for cellulose I are exclusively in two-
dimensional layers, forming hydrogen bonded sheets that do not have strong short-
range interactions with neighboring layers. The attractive interaction energy of a
hydrogen bond is around 6 kcal/mol, about 10 times the average energy available
from thermal motions at 300 K.

43

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

2

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 22. Interaction energy of a methanol dimer with a linear hydrogen bond
as a function of oxygen-oxygen distance. (see color insert)

The hydroxyl group in methanol can be used as a simple model for hydroxyl
groups in sugars. Figure 22 shows the interaction energy as a function of distance
for a methanol dimer with a linear hydrogen bond, using CSFF and GLYCAM
parameters. The curves are similar in the shape and magnitude of minimum
energy, but CSFF is shifted to longer distances by approximately 0.02 Å.
Similar potential energy surface calculations have been performed with quantum
mechanical methods, but the results were reported as a function of carbon-carbon
distance (39), as opposed to the oxygen-oxygen distance used here. A different
study using ab initio methods found the minimum energy methanol oxygen
separation distance to be 2.846 Å (40). The minimum energy distance for a
methanol hydrogen bond pair with GLYCAM is 2.79 Å (-6.33 kcal/mol), and
2.81 Å (-6.74 kcal/mol) for CSFF.

Figure 23 shows the interaction energy for a hydrogen bondedmethanol dimer
as a function of O-O distance up to 4.4 Å, and D-H—A angles greater than 120°.
Two contour lines in 1 kcal increments above the lowest energy are drawn on each
surface. The 2 kcal/mol isoline closely follows the 3.4 Å distance. The hydrogen
bonds distances and angles reported for cellulose Iα (purple) and Iβ (white) are
plotted on each surface. Many hydrogen bond distances for Iα are outside the
traditional definition of hydrogen bonds, either longer than 3.4 Å or slightly less
than 120° D-H—A angles. There are also several hydrogen bonds that are very
short and would have a repulsive interaction energy with these parameters. This
may partially explain why Iα is less stable than Iβ.
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Figure 23. Interaction energy of a methanol dimer hydrogen bond as a function
of oxygen-oxygen distance and angle for CSFF (top) and GLYCAM06 (bottom).
Proposed hydrogen bonds from Iα and Iβ are shown in purple and white,

respectively. (see color insert)

The two-dimensional hydrogen bond patterns in cellulose I give the layers a
ribbon-like character. The short-range, directional nature of the hydrogen bonds
prevents the chains ends from splaying or fanning out from each other and also
prevents the chains from separating at elevated temperatures. The stacking of the
ribbons prevents the layers from rolling into a tube shape, and the chains are not
very elastic in the direction of the molecular axis. These constraints on ribbon
shape allows a helicoidal twist to develop; however, the amount of twist is limited
by the elasticity of the chains. Ideal helicoidal surfaces can be described by the
path of an infinite line rotating and translating along an axis at a constant rate. In
this case, the line corresponds to the width of the hydrogen-bonded sheet, and the
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Figure 24. Twist of several cellulose fibrils from the GLYCAM06 simulations;
from left to right DP 14 and 36 chains, DP 40 and 36 chains, DP 40 and 16

chains. The magnitude and character of twist depends on the width and length of
the fibril. Longer and wider fibrils are less twisted than thinner or shorter fibrils.
On the extreme right is the widest layer from the 16-chain fibril, showing the
sheet edge at top and the full fibril width at bottom. For the 16-chain fibril, all

three views are from the same direction. (see color insert)

axis of rotation and translation is parallel to the chains in the center of the fibril.
Most polymer ribbons have the molecular axis perpendicular to the twist axis, but
the biosynthesis of cellulose extrudes the molecules as parallel chains.

Because the cellulose chains are not able to stretch, the amount of helicoidal
twist is limited. The length-to-width ratio also affects the twist of hydrogen-
bonded cellulose sheets. The elastic stretching energy per unit area divided by
the bending energy per unit area gives a dimensionless parameter that depends
on the fourth power of the ribbon width (41). Three microcrystals of cellulose
Iβ simulated using the GLYCAM06 force field are shown in Figure 24 from the
side, from the chain ends, and with just the top and bottom chains. The effect
of microfibrl length and width are apparent, where the DP 14, 36-chain fibril has
a twist angle of 2.16°/nm, the DP 40, 36-chain fibril 2.09°/nm, and the DP 40,
16-chain fibril 4.51°/nm.

The longer fibril with 36 chains is less twisted per unit length than the shorter
fibril. The structure of the 16-chain fibril is drastically different, with the individual
top and bottom chains showing much more curvature than in the 36-chain fibril.
Measuring the Gaussian curvature of these layer surfaces should be a good way
to characterize these shapes. There is not such an obvious difference for CSFF, as
shown in Figure 25, where the three-dimensional hydrogen bond pattern aligns
the chains in the layers, preventing significant twist. In preliminary cellulose
Iα simulations, the hydrogen bonding remains mostly two-dimensional, and the
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Figure 25. Three fibrils of Iβ, as shown in Figure 24, with the CSFF force field.
All have extensive three-dimensional hydrogen bonding and so do not show
significant twist despite the differences in length and width. (see color insert)

magnitude of the twist in Iα for both CSFF and GLYCAM06 is similar to the twist
shown in Figure 24 for the GLYCAM06 Iβ simulations (data not shown).

Conclusions

Cellulose structure simulations can be very sensitive to force field parameters
and treatment of long-range interactions. Differences between force field
conformational preferences at the scale of a single cellobiose molecule lead to
radically different macroscopic properties of cellulose fibrils. The distribution of
hydrogen bond angles and distances from these dramatically different structures
is similar, raising doubt as to whether Infrared or Raman spectroscopy would be
able to distinguish between these possible hydrogen bond schemes on the basis
of hydroxyl vibration.

Methods

All of the calculations reported here used the CHARMM molecular
mechanics program (42). The sugar atoms were modeled using parameters
specifically developed for carbohydrates, namely the CSFF (43) and GLYCAM
(44) force fields. GLYCAM04L and GLYCAM06 parameters were downloaded
from the GLYCAM web page and reformatted for use in CHARMM. The
energy terms calculated with CHARMM for a configuration of cellobiose were
validated by comparison to the energy terms produced with AMBER (45). Both
of these carbohydrate parameter sets are all-atom force fields, but for clarity of
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presentation most figures in this work omit aliphatic hydrogen atoms. The water
molecules were represented using the modified TIP3P force field (46, 47).

Conformational analysis of cellobiose, infinite chains of cellulose, and
infinite sheets of cellulose was conducted by constructing all combinations
of hydroxymethyl rotamers and clockwise and counter-clockwise hydroxyl
orientations (48, 49). The potential energy of each starting configuration
was minimized with up to 1000 steps of the conjugate gradient minimization
algorithm. The energy at each point was scaled relative to the global mimimum
energy for each map (50).

Several cellulose Iβ and Iα microcrystallites were constructed using the
coordinates reported by Nishiyama et al., where the structure was inferred from
x-ray fiber diffraction analysis of sheets of highly crystalline cellulose (51,
52). The Iβ structure was reported to be a monoclinic P21 crystal with unit cell
dimension of a = 7.784 Å, b = 8.201 Å, and c = 10.380 Å, and γ = 96.5°. The
Iβ unit cell consisted of two independent anhydroglucose units, with the chains
containing them labeled as “center” and “origin,” referring to their positions in
the unit cell. The Iα structure was reported to be a triclinic P1 crystal with unit
cell dimension of a = 6.717 Å, b = 5.962 Å, c = 10.400 Å, α = 118.08°, β = 114.80
° and γ = 80.37°. The Iα unit cell contained one chain, with anhydrocellobiose
as the repeating unit. Both cellulose Iα and Iβ have hydrogen bonded sheets,
and the major difference between these structures is primarily in how the sheets
are packed together. Figure 2 shows crystals of Iα and Iβ from the side of the
hydrogen bonded sheets, emphasizing this difference in packing. Iα has sheets
that are stacked along a constant inclined axis, where neighboring sheets are
always shifted by +c/4, and Iβ has sheets that alternate between +c/4 and -c/4
packing.

Using the crystal-building facilities in CHARMM, two small crystals with
different exposed crystallographic faces were fabricated. The cellooligomer
chains in these crystals were either 14 or 40 monomer units in length, and
hydroxyl hydrogen atoms were placed in the reported predominant hydrogen
bond pattern. One of these microcrystallites contained 36 chains and emphasized
hydrophilic surfaces while the other crystal was constructed for Iβ only, and
contained 32 chains emphasizing the (100), (200), (010), and (020) surfaces.
Different size crystals were chosen to keep the overall surface area as nearly equal
as possible. For convenience, these two crystals will hereafter be referred to as
the “diagonal” and “square” crystals. The square crystal has surfaces that are
parallel to the unit cell axes (the 32-chain crystal), and the diagonal crystal has
surfaces that cut across two unit cell axes (the 36-chain crystal). A microcrystal
of the same cross-section as the diagonal crystal (36 chains total) was constructed
with DP 40, as was a smaller-diameter DP 40 microcrystal with four chains per
side (16 chains total).

Each of the constructed DP 14 crystallites was placed in an equilibrated
rectangular box of TIP3P water molecules with dimensions 56.0 Å by 56.0 Å by
89.0 Å. The DP 40 crystallites were placed in an equilibrated box with dimensions
59.7 Å by 59.7 Å by 233 Å. All those water molecules that overlapped with the
carbohydrate heavy atoms were deleted. The diagonal simulation contained 6116
water molecules and 29,040 atoms in total, and the square simulation contained
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6434 water molecules and 28,806 atoms. The DP 40 crystal with 36 chains
contained 19,251 water molecules and 88,101 atoms in total, and the DP 40
crystal with 16 chains contained 23,823 water molecules and 84,957 atoms in
total. Simulations were performed on the Datastar and Teragrid clusters at the
San Diego Supercomputer Center.

The following procedure was used for the initial publication of this work using
the CSFF parameter set; slight modifications were later made to accommodate
the GLYCAM parameters. Two hundred steps of steepest descent minimization,
followed by 100 steps of conjugate gradient minimization were first applied to
the system to relieve any serious strains resulting from the set-up procedure. MD
simulations were then used to heat the system from 50 to 300 K in 50-K increments
over a period of 10 ps, followed by an additional 190 ps of equilibration at 300K.
After this heating and equilibration stage, the system velocities were not adjusted
again, and the systemwas simulated in the NVE ensemble using a Verlet integrator
with a step size of 1 fs. Non-bonded interactions were truncated at 15.0 Å on
a neutral-group-by-neutral-group basis after being made to go smoothly to zero
between 12.0 Å and 13.0 Å using ST2-type switching functions (53). Image non-
bond interactions were also cut off at 15.0 Å. All calculations used a dielectric
constant of 1. Chemical bond lengths involving hydrogen atoms were kept at
fixed lengths using the constraint algorithm SHAKE (54). Following equilibration,
trajectories were integrated for an additional 1 ns before analysis for the diagonal
and squaremicrocrystals with the CSFF parameters. For comparison, an additional
simulationwas conducted that was exactly like the diagonal crystal system in every
respect except that dihedral angle restraining forces were used to keep the primary
alcohol groups in the conformation found in the crystal. Three other simulations
were carried out to test the sensitivity of the results to starting conditions. These
test simulations consisted of: 1) a simulation in which the origin chains were
replaced by chains in the center chain conformation; 2) a second simulation in
which the center chains were replaced by chains in the origin chain conformation;
and 3) a third simulation in which the center and origin chains were interchanged.

For the continuation of the previously published study, a few changes in
protocol were made. With the lack of neutral charge groups in GLYCAM06,
a radial cutoff for group pairs as used with CSFF would cause a significant
discontinuity in electrostatic interaction energy at the cutoff boundary. To keep
simulation conditions consistent, Particle Mesh Ewald electrostatics (55) were
used for crystal simulations with both the CSFF and GLYCAM06 parameter sets.
The integration step size was increased to 2 fs but the number of steps used for
heating and equilibration was unchanged, for a total of 400 ps of heating and
equilibration in each simulation. The trajectories were integrated for an additional
3 to 10 ns. A simulation was run using the structure obtained from the CSFF
diagonal crystal conformation as the initial structure for a GLYCAM simulation.
To test the assertion that the structure obtained with CSFF may be cellulose IVI,
the coordinates for cellulose IVI published by Gardiner and Sarko (38) were used
to construct a DP 14 microcrystal similar to the Iβ diagonal crystal and was run
with CSFF and GLYCAM06.

Methanol dimer interaction energies as a function of oxygen-to-oxygen
distance and hydrogen bond donor-hydrogen-acceptor (D-H--A) angle were
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calculated for the CSFF and GLYCAM06 force fields. Only hydrogen bond
geometries corresponding to D-H--A angles of greater than 120° and oxygen
pair distances up to 4.4 Å were considered, although hydrogen bonds are usually
defined with the oxygen pair distance at 3.4 Å or less. A cylindrical coordinate
grid with ρ spacing of 0.01 Å and φ spacing of 2° was constructed for each force
field, and the minimized energies at each point were normalized relative to the
energy at 50 nm separation. The relative orientation of the hydroxyl hydrogen
atoms was restrained to prevent the formation of a doubly hydrogen-bonded pair
at angles approaching 120°.
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Chapter 3

Atomistic Simulation of Lignocellulosic
Biomass and Associated Cellulosomal Protein

Complexes

Loukas Petridis,1,* Jiancong Xu,1 Michael F. Crowley,2
Jeremy C. Smith,1 and Xiaolin Cheng1

1University of Tennessee / ORNL Center for Molecular Biophysics, Oak
Ridge National Laboratory, Oak Ridge, TN 37831-6164, USA

2Chemical and Biosciences Center, National Renewable Energy Laboratory,
Golden, CO 80401-3393, USA

*Petridisl@ornl.gov

Computer simulations have been performed to obtain an
atomic-level understanding of lignocellulose structure and the
assembly of its associated cellulosomal protein complexes.
First, a CHARMM molecular mechanics force field for
lignin is derived and validated by performing a molecular
dynamics simulation of a crystal of a lignin fragment molecule
and comparing simulation-derived structural features with
experimental results. Together with the existing force field
for polysaccharides, this work provides the basis for full
simulations of lignocellulose. Second, the underlyingmolecular
mechanism governing the assembly of various cellulosomal
modules is investigated by performing a novel free-energy
calculation of the cohesin-dockerin dissociation. Our
calculation indicates a free-energy barrier of ~17 kcal/mol and
further reveals a stepwise dissociation pathway involving both
the central β-sheet interface and its adjacent solvent-exposed
loop/turn regions clustered at both ends of the β-barrel structure.

Introduction

Plant cell wall structure has come under renewed interest in the context of
producing bioethanol from the enzymatic hydrolysis of lignocellulosic biomass

© 2010 American Chemical Society
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(1–5). The plant cell wall is made of cellulose microfibrils that are embedded in a
matrix of polysaccharides (hemicelluloses and pectins), lignins, and proteins (6).
Cellulosic ethanol production is a multi-stage process often involving, first, the
pretreatment of biomass, then the hydrolysis of cellulose (and hemicelluloses) by
enzymes to smaller oligosaccharides, and, finally, the fermentation of sugars to
ethanol. The hydrolysis step is the bottleneck in the process because of the natural
resistance, or “recalcitrance,” of plant cell walls to degradation (2).

Given the complex and heterogeneous nature of biomass materials, a better
understanding of their structure, dynamics, and degradation pathways becomes a
necessary first step toward overcoming their recalcitrance to hydrolysis. Through
years of extensive biochemical and biophysical studies, it has been established that
although biomass recalcitrance is a very complex phenotype, with many factors
contributing to it, lignin plays an important role (7). There is evidence of an
inverse correlation between the rate of biomass hydrolysis and the lignin content
(the amount of lignins present in the cell wall) (8). Lignin acts as a physical
barrier, preventing enzymes from reaching the cellulose substrate. There is also
evidence that lignin-enzyme interactions significantly contribute to the decline of
rate observed during hydrolysis of lignocellulose substrates (8). Lignin poses an
additional challenge in that, unlike hemicellulose and pectins, it is not readily
removed with economically sustainable pretreatment. It has been suggested that,
although lignin is initially released during pretreatment, it precipitates back on
the cellulose surface at the end of the process (9). Another factor contributing
to biomass recalcitrance is the crystallinity of cellulose. Cellulose can be found
in crystalline fibrils, the compact structure of which impedes enzymatic access.
In comparison, amorphous cellulose is readily digested by enzymes (10). Lignin
content and the degree of crystallinity of cellulose had the greatest impact on
biomass digestibility of Poplar wood (11). A more recent study of alfalfa lines
found that the efficiency of enzymatic hydrolysis and the amount of total sugars
released is proportional to the plant’s lignin content (12).

A second promising avenue for altering biomass recalcitrance is designing
more efficient enzyme systems to degrade the plant cell wall. For this, we
need to more completely understand the structure, mechanism, and function of
these enzyme systems. Generally, two classes of enzyme systems have been
observed in microorganisms (13–15). One class consists of several individual
endoglucanases, exoglucanases, and ancillary enzymes that can act synergistically
to deconstruct plant cell walls. These enzymes are usually found in aerobic
fungi and bacteria, of which the glycosyl hydrolases from Trichoderma reesei
(T. reesei) is the best studied. The other system class, which is usually found in
anaerobic microorganisms, involves the formation of a large, extracellular enzyme
complex called the cellulosome, which consists of a scaffolding protein and many
associated enzymes. Lignocellulosic biomass is structurally heterogeneous and
includes many components in addition to cellulose, so efficient decomposition
requires a variety of enzymes with a wide range of specificities and activities. To
this end, the multienzyme cellulosome system seems particularly advantageous
and has become a paradigm for designing more efficient enzyme complexes and
biomimetics. During the past few years, an increasing number of cellulosome
systems have been identified (14). Information is also becoming available
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regarding the structural principles governing the interactions among various
cellulosomal domains (16, 17). A cellulosome consists of a fibrillar protein
(called the scaffolding protein) that contains binding sites (called cohesins) for the
cellulosomal enzymemodules positioned periodically along the fibrils. In addition
to their catalytic domains, all cellulosomal enzymes contain a cohesin-binding
site called a dockerin. The cohesin–dockerin interaction is an important factor in
cellulosome assembly. For example, the Clostridium thermocellum cellulosome
assembles through the interaction of a type I dockerin with one of several type
I cohesin modules. Although cohesins and dockerins exhibit relatively high
sequence homology, the interaction between cohesins and dockerins is generally
species specific (i.e., cohesins from one species do not recognize and interact with
dockerins present in other species) (16, 18).

Although computational studies have proven useful in providing detailed
insight into diverse biochemical/biophysical processes otherwise inaccessible
from experiment alone, atomistic simulation of lignocellulosic models has so far
been limited. With the help of high-performance computing, the foundations
for accurate simulation of these materials have been laid recently (19, 20); and
various simulations are starting to emerge that can be employed to derive physical
properties of lignocellulosic biomass, thus serving as a reference for interpreting
an array of biophysical experiments. On another front, atomic-level structural
information is now being accumulated for individual cellulosomal modules (17,
21), although the structure of the entire cellulosome complex is still difficult to
obtain. The availability of this partially complete data from different sources,
however, offers great opportunity for using computational approaches to study
the structure, dynamics, and assembly process of cellulosome complexes. In this
chapter, we will focus on two lines of our research as the initial efforts toward our
long-term goal. One is on the parameterization of a potential energy function for
simulating lignocellulosic biomass. The other is on modeling cohesin-dockerin
interaction in cellulosome.

Toward More Realistic Simulation of Lignocellulosic Biomass

The chemical composition and structure of lignins are highly heterogeneous,
varying significantly between different plant species and even within different
parts of the same plant wall. Although the exact chemical formula of lignins
is not known, abundant information is available on its composition. Lignins
are composed primarily of three units: p-hydroxyphenyl (H), guaiacyl (G), and
syringyl (S), derived by oxidation of three alcohol monolignols: p-coumaryl,
coniferyl, and sinapyl, respectively (22) (Figure 1a). There are various linkages
that connect the units, leading to the formation of the branched lignin biopolymer.
The most common linkages are β-O-4’, 5-5’, α-O-4’, and β-5’ in guaiacyl and
syringyl (Figure 1b). There is an ongoing heated debate on how monolignols
couple to form the lignin macromolecule. One theory suggests that lignin
monomers are oxidized and then coupled in a combinatorial fashion (54).
The second theory suggests that lignin primary structure is controlled at the
proteinaceous level (55). To the best of our knowledge, there are no currently
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published reports on the exact primary structure of lignins. For this reason, our
studies are based on the assumption that this primary structure is combinatorically
derived. We stress that our work does not attempt to validate either of the
previously mentioned theories.

Although there is a large volume of simulation work on cellulose (23–28),
there are relatively few computational studies of lignin. Previous computational
studies (29–32) employed the CHARMM27 empirical force field (33), which was
developed to model proteins rather than lignin. In recent work (20), we presented
the first essential step towards the accurate computer simulation of lignin: the
derivation of an empirical molecular mechanics (MM) force field. Together
with the existing force field for polysaccharides, this force field will enable full
simulations of lignocellulose.

A Molecular Mechanics Force Field for Lignin

Parameterization Strategy

In this section, we outline the general strategy employed to obtain the lignin
force field. The CHARMM potential energy function of a molecule is as follows
(33):

where contributions to the energy include bonded (bond, angle, Urey-Bradley,
dihedral, and improper dihedral) and non-bonded (the Lennard-Jones 6-12
potential for the van der Waals interactions and Coulomb interactions) terms. The
force constants K and partial atomic charges q are molecule-dependent and must
be optimized to model any specific molecule prior to performing the simulation.

This parameterization of lignin follows the main procedure of
parameterization of proteins (33) and ethers (34) for the CHARMM force field.
Lignin also has a linear ether bond, but it is different from those examined in
(34) in that the oxygen is bonded to a phenyl ring and a tertiary carbon. For this
reason, it was necessary to create a new atom type, OET, to represent the lignin’s
ether oxygen. Parameters were optimized by considering two factors. First, the
target data were reproduced as closely as possible. Second, compatibility with
the existing CHARMM force field was ensured by restricting optimization to the
new parameters that do not already exist.

Two model compounds were used. The first model system, methoxybenzene,
also known as anisole (see Figure 1c), incorporates the basic features of the β-
O-4’ link, an ether oxygen bonded to a tertiary and an aromatic carbon. Anisole
was used to obtain all parameters involving the ether oxygen atom. The second
compound (see Figure 1d) is p-hydroxyphenyl (PHP), the simplest lignin unit.
PHP was used to obtain all lignin parameters not involving the ether oxygen.
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Figure 1. (a) The tree monolignols: p-coumaryl (R1 = R2 = H), coniferyl (R1 =
H, R2 = OMe), and sinapyl (R1 = R2 = OMe). (b) A guaiacyl unit connected with
a β-O-4’ linkage to a syringyl unit. (c) Model compound anisole. (d) Model

compound PHP.

The optimization strategy for the new parameters is summarized below
(Figure 2). Equilibrium values for bonds, angles, and dihedrals were taken from
MP2/6-31G* QM-optimized geometries and were not further revised. The van
der Waals parameters were taken unaltered from the CHARMM force fields (33),
including those for the new atom type, OET. Initial values for the partial atomic
charges of O1, C1, and Cα were deduced from a restricted fit to the quantum
mechanics (QM) electrostatic potential (RESP) on selected grid points (35),
while all other partial charges were fixed to their original CHARMM values.
An iterative procedure, described in the next paragraphs, was followed until
convergence was reached.

Optimization of Partial Atomic Charges

Charges were further optimized with respect to the QM interaction energies
using a supramolecular approach with a model compound (anisole) interacting
with onewater molecule. The partial charges were adjusted to reproduceminimum
distances and interaction energies between anisole and a TIP3P water molecule
(36). Two geometries were considered in this supramolecular approach: the first d0
with water lying on the phenyl plane, and the second d120 with the water hydrogen
pointing at the position of the ether oxygen lone pair. A list of all final atomic
charges is shown in Table 1. Only three charges (O1, C1, and Cα) were optimized,
with the rest being kept to their CHARMM values.

To mimic the effect of electronic polarizability, which is not explicitly
taken into account in additive force fields, atomic charges were purposely
overestimated. This leads to an enhanced molecular dipole moment, with the
QM gas-phase dipole moment being 1.42 Debyes, whereas the MM value is 1.66
Debyes. Table 2 compares the MM and QM interaction energies and distances,
which were used to optimize the anisole charges. The empirical calculations
successfully reproduced the scaled QM interaction energies, with the error being
less than 3%. The empirical model gives distances about 0.3Å shorter than the
QM values, a result of intentionally overestimating the gas-phase charges to
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Figure 2. Schematic representation of parameterization strategy. (Reproduced
from reference (20). Copyright 2008 Wiley Periodicals, Inc.)

Table 1. A list of the anisole atoms with their respective chargesa

Atom name Atom type Charge

Cα CT3 -0.060

Hα1, Hα2, Hα3 HA 0.090

O OET -0.280

C1 CA 0.070

C2, C3, C4, C5, C6 CA -0.115

H2, H3, H4, H5, H6 HP 0.115
a Atom names refer to Figure 1c and atoms types follow the CHARMM27 force field with
the new atom type labeled as OET.
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obtain good condensed-phase properties. In the previous general force field for
ethers, a similar behavior was observed with a 0.3Å difference between QM
and MM (34). Finally, the electronic charge density was examined by Mulliken
analysis (using the NWChem software), and the charge transfer was found to be
insignificant.

After completing parameterization, we performed a further calculation to
ensure that the partial atomic charges of Table 1, derived using a model compound,
can be transferred to lignin. The minimum interaction energies and distances
between a lignin dimer (G and S units connected with a β-O-4’ linkage shown
in Figure 1b) and a water molecule were obtained without further modifying the
charge parameters. The excellent agreement between the QM and MM interaction
energies justifies using these charges for the β-O-4’ lignin linkage.

Dihedral Parameters

After completing the non-bonded terms, parameters for dihedral rotations
were deduced from the QM potential energy surfaces. Six dihedral rotations
were considered. The two rotations around the β-O-4’ linkage (ω1= X-C1-O-Cα
and ω2= C1-O-Cα-H, where X refers to any atom types) were obtained using
the anisole model compound. The remaining four dihedrals that do not involve
the ether oxygen (ω3=C2-C1-C7-X, ω4=C1-C7-O7-HO7, ω5=C1-C7-C8-X, and
ω6=X-C8-C9-X) were deduced from the more complex rotational potential energy
profiles of the second model compound, PHP. The optimization was based on
reproducing the adiabatic QM energy surfaces. As an example, two plots are
shown in Figure 3. In Figure 3a, the MM surface closely follows the target QM
data, whereas in Figure 3b, although the agreement between the QM and MM
data is not perfect, the rather complex shape is reproduced satisfactorily.

Bond and Angle Vibrations

The remaining bonded parameters (bonds and angles) were optimized to
reproduce vibrational frequencies and eigenvector projections derived from QM
calculations. For this, we used the Automated Frequency Matching Method
(AFMM) (37), which optimizes the MM parameter set until the best fit with
the QM reference set is obtained. AFMM requires both the eigen frequencies
and eigenvectors of the MM set to match the QM data. This is an important
aspect of the method, because it avoids incorrect mode matching and misleading
reproduction of vibrational frequencies. The resulting plots of the vibrational
frequencies obtained with QM and the MM for anisole and PHP are shown in
Figures 4a and 4b, respectively. In both model compounds, the MM and QM
frequencies match very well, with root mean square deviation of 51.6 cm-1 for
anisole and 55.6 cm-1 for PHP, indicating that the bond and angle parameters are
well-optimized.
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Table 2. Minimum interaction energies (kcal/mol) and distances (Å) between
water:anisole and water:lignin-dimera

Interaction energies Interaction distances

Orientations QM MM QM MM

d0 -4.01 -3.96 2.15 1.82

d120 -3.18 -3.09 2.16 1.87

dimer -3.93 -4.02 2.10 1.81
a QM interaction energies were scaled by 1.16 as described in the text. Orientation
geometries considered have the dihedral between the water molecule and the phenyl ring
being 0, and 120 degrees, respectively and “dimer” refers to a G and S unit connected with
a β-O-4’ linkage.

Force Field Validation

In the final part of this work, the parameter set was tested without further
adjustment against a condensed-phase experimental property of lignin that was not
used during the parameterization. Because of the highly heterogeneous structure
of lignin, the most appropriate experimental data to use is the crystal structure of a
lignin subunit dimer, erythro-2-(2,6-dimethoxy-4-methylphenoxy)-1-(4-hydroxy-
3,5-dimethoxyphenyl) propane-1,3-diol (EPD) (38). The chosen compound is
very similar to two syringyl units connected with a β-O-4’ linkage, but with a
methyl group replacing the hydroxyl group of one of the phenol rings. The single
crystal X-ray diffraction study revealed a triclinic P1 ̅ structure whose unit cell
dimensions are listed in Table 3.

To mimic as closely as possible the conditions under which the experiment
was run, the MD simulation was performed for a 4×4×4 unit cell (128 dimers)
using periodic boundary conditions while maintaining the temperature and pres-
sure at their experimental values. The unit cell dimensions were allowed to vary
during the simulation, and their time averages are listed in Table 4. The MD unit
cell dimensions were close to the experimental values, and the system remained
triclinic. The unit cell underwent a moderate expansion, with a 5% increase in vol-
ume. After aligning the MD coordinates with the experimental structure, the root
mean square deviation (RMSD) between the experimental and calculated structure
was 0.173±0.033 Å.

In particular, we should also note that the current force field models the β-O-
4’ linkage that is essential to the conformation of the lignin macromolecule very
well. The time averages of the two dihedrals (d1 and d2) that define the β-O-4’
linkage were compared with the experimental crystal values. The two dihedrals
are (numbering scheme in Fig. 1b): d1 = C5-C4-O-C8′ = 77.9 ± 6.3°, compared to
the experimental value of 80.0° and d2 = C4-O-C8′-C7′ = –148.5 ± 5.5°, compared
to the experimental value of –152.8°. As with previous results, the simulation
results agree with the experimental ones.
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Figure 3. Potential energy profiles for rotation around the (a) ω1 = C2-C1-O-Cα
dihedral of anisole and (b) ω4 = C1-C7-O7-HO7 dihedral of anisole. (Reproduced

from reference (20). Copyright 2008 Wiley Periodicals, Inc.)

Building Lignocellulose Models

The accurate computer simulation of lignin presents significant challenges.
Unlike many biological macromolecules that have been studied with molecular
simulation, both the primary and three-dimensional structures of lignins are not
known. Hence, a logical strategy is to build randommultiple lignin units that have
ensemble composition (and linkage) properties consistent with experimentally
derived average chemical composition. In particular, emphasis was placed on
ensuring that the models accurately represent the lignins found in the cell walls of
softwoods. The following paragraphs describe how the atomistic lignin models
were built.

We built 26 lignin molecules altogether, each with a distinct primary and
tertiary structure. The initial structural models were generated by first deriving the
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topology of the molecules and then generating the tertiary structure. To generate
molecular topologies, we used a variety of experimental data on lignin composition
in softwoods. Softwoods are composed mainly of guaiacyl (G) units (3, 22),
so only G units are considered to be present in the model. A typical linkage
composition of softwoods is: β-O-4’ 50%, 5-5’ 30%, α-O-4’ 10% and β-5’ 10%.
Linkages β-O-4’, α-O-4’, and β-5’ contain chiral centers at the β and α-carbons.
However, lignins are not found to be optically active (39). Hence, the constructed
lignin molecules contain equal numbers of left- and right-hand linkages. The
molecular weight of lignins is on the order of 10,000 or greater (40), and the
models have a molecular weight of 13,000. Crosslinks are formed when one
unit participates in more than one linkage. Twenty-six lignins were built with
varying degrees of crosslinking, but the average crosslink density was chosen to be
consistent with the experimental value of 0.052 obtained from spruce wood (41).
With these experimental data as a guide, random lignin configurations were created
using a script written in the program language Python. This method produced
26 molecules that were different to each other, but were all consistent with the
experimentally determined properties of softwoods. For example, although all
lignins had the same linkage composition, the order of the linkages was different.
Furthermore, the number of crosslinks and their positions in individual lignin
molecule were also different.

Once the topologies were derived, the 3D structures for lignin molecules
were constructed using a step-wise approach. Each new unit was added to
the existing structure using the appropriate linkage. As mentioned above, the
geometries of all the units and linkages were obtained using high-level quantum
chemical calculations. Subsequently, the entire new molecule was minimized
using a molecular mechanics force field. The procedure was repeated until the
maximum molecular weight of 13,000 was reached. As indicated earlier, our
approach, while consistent with the average chemical properties of lignin, is
limited by the lack of primary and tertiary structures of these molecules.

In contrast to lignins, the chemical structure of cellulose is known. It is
a straightforward process to build cellulose microfibrils using the molecular
structure of cellulose Iα (42) and Iβ (43), obtained with a combination of X-ray
and neutron diffraction. In the present model, as in other studies, cellulose is in
the Iβ form; and the MD simulation starts with the fibril being a perfect crystal.
A preliminary model of cellulose surrounded by lignin molecules in solution
is shown in Figure 5. Such initial models can probe the interactions between
lignin and cellulose at the atomic level, as well as provide a way to parameterize
coarse-grained mesoscale models.

Modeling Cellulosomes: Cohesin-Dockerin Interaction

Insight of Type I Cohesin-Dockerin Recognition from the Crystallographic
Structure

The first 1.9-Å crystal structure of the type I cohesin-dockerin complex from
the cellulosome ofC. thermocellum has been determined (17) (Figure 6), providing
insight into the structure andmechanism bywhich the cellulosome assembles. The
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Figure 4. Vibrational frequencies of model compounds anisole (left) and
PHP (right). The plotted line shows an ideal fit between QM and MM data.
(Reproduced from reference (20). Copyright 2008 Wiley Periodicals, Inc.)

cohesin module forms an elongated, nine-stranded β-barrel in a classical jelly-
roll topology with a tightly-packed aromatic/hydrophobic core. The two faces of
the β-barrel are composed of strands 5, 6, 3, and 8 on the contact face with the
dockerin, and strands 4, 7, 2, 1, and 9 on the opposite face. The dockerin partner of
the cohesin-dockerin complex contains a duplicated 22-amino-acid sequence that
comprises α-helix 1 and 3 in conformation, respectively. The dockerin structure is
organized into two calcium-binding loop-helix motifs separated by a short linker
region. Indeed, it has been found that Ca2+ plays a key role in maintaining the
structural integrity of the cohesin-dockerin complex (44, 45).
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Table 3. Unit cell properties of small-molecule-dimer for experimental
crystal structure and from molecular dynamics simulation

Cell dimension X-ray MD

A (Å) 8.69 8.73 ± 0.02

B (Å) 8.90 8.93 ± 0.01

C (Å) 13.11 13.68 ± 0.03

α (deg) 73.85 74.48 ± 0.05

β (deg) 86.15 86.30 ± 0.01

γ (deg) 83.06 83.06 ± 0.02

Cell volume (Å3) 966 1020

Table 4. Dihedrals defining the β-O-4’ linkage d1 = C5-C4-O-C8 and d2 =
C4-O-C8-C7, see Figure 2d

Dihedral X-ray MD

d1 (deg) 80.0 77.9 ± 6.3

d2 (deg) –152.8 –148.5 ± 5.5

The cohesin structure’s compact nature, together with the fact that the contact
surface features no obvious binding pocket or cleft, suggests that binding between
cohesins and dockerins occurs through the exposed surface residues. The cohesin
in the type I complex comes into contact with the entire length of α-helix 3, but
is only in contact with the C-terminal end of helix 1 from the type I dockerin.
The N terminus of helix 1 is diverted away from the cohesin surface. Given
the orientation of the dockerin on the cohesin surface and the two-fold structural
symmetry within the dockerin domain, Carvalho et al. provided evidence for a
dual binding mode of dockerin modules to cohesins (21).

The available crystal structures suggests that the cohesin-dockerin association
is maintained mainly by hydrophobic interactions, consistent with the negative
heat capacity associated with the binding event (17, 46, 47). The proteins also
interact through an extensive hydrogen-bonding network between one face of the
cohesin and the corresponding dockerin domain. Several hydrophilic residues
play an essential role in recognizing and forming the complex: Arg77, Tyr74,
Asp39, Glu86, and Gly89 of the cohesin domain, and Leu22, Arg23, Ser45,
Thr46, and Arg53 from α-helices 1 and 3 of the dockerin domain (Figure 6).
Biochemical mutagenesis studies have provided complementary clues to the mode
of cohesin-dockerin interaction. One of the striking mutations, known to cause
recognition failure, is D39N. Asp39 of the cohesin, one of the most conserved
residues, is located at the protein-protein interface of the complex. This residue
forms direct hydrogen bonds with Ser45 of the dockerin, the most critical residue
for domain recognition (16, 21, 48), and forms water-mediated hydrogen bonds
with Val21 and Ile43. It has been shown that the single substitution of Asp39 by
a neutrally charged Asn reduces the affinity of the interaction by more than three
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Figure 5. Atomistic model of the plant cell wall components cellulose (blue)
and lignin (green).

Figure 6. Crystal structure of the cohesin-dockerin complex in cartoon
representation with β-sheets (cohesin) in green, α-helices (dockerin) in orange
and loop regions in silver. Key residues involved in inter-domain interaction are

highlighted in licorice mode, and colored by atom names.

orders of magnitude and disrupts the normal recognition of the dockerin (49).
Thus, this residue is a hot spot for the cohesin-dockerin interaction. In addition,
more recent biophysical and dockerin-mutagenesis experiments have revealed
an association constant (Ka) of 8×107 M-1 for the wild-type cohesin-dockerin
complex and the importance of highly conserved Ser45-Thr46 in the Ca2+-binding
loop for recognition of type I dockerin (21). It has been demonstrated that an
alternative binding mode can be achieved by substituting the helix-3 Ser45/Thr46
pair with alanines; and the resultant crystal structure at 2 Å resolution shows
that the dockerin module interacts with its cognate cohesin module through the
helix-1, in which Ser11 and Thr12 play an equivalent role in binding.
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Free Energy Landscape of Cohesin-Dockerin Dissociation

Recognizing Type I cohesins by dockerins is the essential event in assembling
individual enzymatic subunits into the cellulosome complex. Even though the
crystallographic structure and experimental measurements have provided essential
information about the association of cohesins and dockerins, the underlying
microscopic dynamic and energetic processes are not directly accessible to
experiments. Consequently, aspects of the mechanism governing the assembly of
cohesins and dockerins remain uncertain. It is therefore particularly informative
to elucidate at the atomistic level the detailed molecular principles upon which
the cohesin-dockerin interaction is based.

Understanding the underlying molecular association/dissociation mechanism
in terms of structure and dynamic events is facilitated by the knowledge of the
free-energy profile for the cohesin-dockerin dissociation. The effective free
energy (or the potential of mean force, PMF) of cohesin-dockerin dissociation
was estimated from a total of 100 ns MD simulation in bulk solution, using the
adaptive biasing force (ABF) method (50, 51) implemented in NAMD (52).
This method relies upon integrating the average forces acting along a reaction
coordinate (ξ) that was constructed from endpoints corresponding to the average,
or most probable, configurations from unconstrained MD simulations of initial
and final states. The reaction coordinate for the dissociation process was defined
by the separation distance between the cohesion and dockerin center-of-masses.
The results are shown in Figure 7. Although this simple, low-dimensional,
reaction coordinate has not been refined, if properly converged, the PMF from this
reaction coordinate gives an upper bound on the barrier and, again if converged,
will give a proper free-energy change between the states specified.

The free-energy profile’s overall shape along the reaction coordinate shows a
general uphill trend, illustrating quantitatively that the cohesin-dockerin complex
exhibits a resistance against external forces, and that there is a high affinity for
the two domains to remain bound. The global free-energy minimum in the profile
appears at a distance separating the centers of mass equal to 22.5 Å, corresponding
to the stable bound state with the key residues directly in contact. As the two
domains move away from each other, the cohesin-dockerin interactions are
progressively disrupted. Initially, this leads to a steep increase of the free energy
before reaching the first shoulder at ~ 24 Å, at which point the hydrogen bond
Asp39 (OD)-Ser45 (HG) has broken; and residues Asp39 and Ser45 at the
interface of the protein complex are no longer in contact (Figure 7b). Another
characteristic of the initial dissociation is the flow of water molecules into the
binding area, substituting protein residues and forming new hydrogen bonds. The
first dissociation step, therefore, corresponds to disrupting the hydrophobic core
and overcoming the resistance imposed by the Asp39-Ser45 hydrogen bond. As
the two domains move further apart, the free-energy profile reaches the second
slight shoulder at ~ 26 Å. Inspection of the simulation trajectory indicates that the
second shoulder corresponds to the disruption of the recognition strip interaction
with the C-terminal region of α-helix 3, accompanied by the rupture of hydrogen
bonds/salt bridges between Arg53 and Glu86 (Figure 7c). In contrast, at this
point of the dissociation, the C-terminal of the first α-helix of the dockerin,
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Figure 7. (a) Free-energy profile for the dissociation of cohesin and dockerin
domains. The sampling distribution is included in the inset. (b) Snapshot of the
cohesin-dockerin complex at ξ = 24 Å; (c) Snapshot at ξ = 27 Å; (d) Snapshot
of cohesin-dockerin complex in the dissociated state, i.e., ξ > 30 Å. The two
α-helices, β-strands 3, 5, 6, and loop/turn regions are represented in cartoon
mode, colored orange, green, and gray, respectively. The rest of the protein

structure was omitted for clarity.

and especially the backbone carbon atom of residue Arg23, is still repeatedly
in contact with the side chains of the solvent-exposed Arg74 and Tyr77 in the
β–strand 5/6 loop at the other end of the β-barrel, with large fluctuations of
interatomic distances. The final dissociation of the two subunits corresponds to
the shallow well at ~ 30 Å before the PMF eventually becomes nearly flat at >
35 Å (Figure 7d).

The experimental estimate of the overall equilibrium binding constant for
the present cohesin-dockerin complex is 8×107, corresponding to a free-energy
change of about 12 kcal/mol (ΔG = -RTlnKa, where R is the gas constant and
T is temperature). In the simulations, the overall difference in the calculated
free energy between the minimum of the bound state and the barrier is ~ 17
kcal/mol. This agreement is reasonable, given that directly comparing the
dissociation free energy with the experimentally determined absolute binding
energy requires a knowledge of the contributions which were not considered in
this study. The free energy change in the translational and rotational degrees
of freedom on complexation was not included. Implementations of free energy
algorithms have inherent errors. The sampling errors that may arise from the
conformational flexibility of the unbound dockerin domain in solution were
also not considered. Some significant extension to the present computational
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methodologies is needed to tackle the complex situation in the cohesin-dockerin
protein complex. Furthermore, the present study focuses on a detailed view of
the underlying mechanism of association and interaction in the cohesin-dockerin
complex rather than calculating the absolute binding free energy.

Summary and Outlook

The accurate computer simulation of lignocellulosic biomass materials
presents significant challenges. An important first step is the parameterization
of a potential energy function for the system. Here, we derived an MM force
field for lignin that is compatible with the CHARMM potential energy function.
The parameterization was based on reproducing quantum-mechanically derived
target data. Special care was taken to correctly describe the most common lignin
linkage: the β-O-4’ bond. The partial atomic charges of the oxygen and carbon
atoms participating in the linkage were derived by examining interactions between
a lignin fragment model compound and a water molecule. Dihedral parameters
were obtained by reproducing QM potential energy profiles, with emphasis
placed on accurately reproducing the thermally sampled low-energy regions. The
remaining bond and angle parameters were derived using the AFMM method. To
test the validity of the force field, we performed a simulation of a lignin-dimer
crystal. The overall good agreement between the structural properties of the
simulation and the experiment provide confidence that the force field can be used
to simulate biomass. Furthermore, using a large body of experimental data on the
average chemical composition of lignin as references, we have also constructed
preliminary atomic-detail models of lignin.

Another important area of concentration is unraveling the assembly
mechanism of the cellulosome complex using computer simulations. We have
calculated the PMF profile for the wild-type cohesion-dockerin dissociation. The
PMF reveals a high free-energy barrier and a stepwise pattern for the dissociation
process. The sequential dissociation events revealed by the free-energy profile
provides evidence that a set of residues lying on the flattened β-sheet surface
and in the peripheral loop regions is the main obstacle to dockerin unbinding.
Although examination of the crystal structure alone suggests that the formation
of the cohesin-dockerin complex involves relatively large surface areas on
both partners, our simulation results indicate that specific surface regions play
more critical roles than others in forming and maintaining the integrity of the
cellulosome complex. In turn, the insight gained from the present simulation
can be used to guide protein engineering modifications to alter cohesin-dockerin
binding. Efforts are underway to design engineered cellulosomal modules
that can conduct more efficient biomass degradation than the corresponding
wild-type protein complexes. Both atomic-detail and coarse-grained computer
simulations are expected, in conjunction with appropriate biochemical and
biophysical experiments (e.g., Hammel et al. 2005) (53), to provide a foundation
for understanding the principles of domain synergy and cellulosomal activity,
thus allowing the rational, structure-based design of improved cellulosomal
assemblies for cellulosic ethanol production.
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Chapter 4

Modeling the Cellulosome Using Multiscale
Methods

Yannick J. Bomble,* Michael F. Crowley, Qi Xu,
and Michael E. Himmel

BioEnergy Science Center, Oak Ridge, TN 37831, USA, and National
Renewable Energy Laboratory, Golden, CO 80401, USA

*yannick.bomble@nrel.gov

Deriving renewable liquid fuels from biomass using microbial
conversion, which utilizes free enzymes or cellulosomes for
degrading cell wall material to sugars, is an attractive solution
for today’s energy challenges. The study of the structure
and mechanism of these large macromolecular complexes
is an active and ongoing research topic worldwide, with the
goal of finding ways to improve biomass conversion using
cellulosomes. Here, we present methods for illuminating the
structure and function of systems of this size and complexity
using molecular modeling. We show examples of these methods
as applied to a range of sizes and time scales from atomistic
models of enzymatic modules to coarse-grained models of
the entire cellulosomal complex of scaffold and enzymes.
Normal mode analysis, fluctuations, hydrogen-bond analysis
of enzymes, as well as sampling techniques for cellulosome
assembly are described and the results presented. For example,
the mechanism of the immunoglobulin-like module of GH9
proteins is shown to be determined largely by hydrogen bond
networks, and the exact hydrogen bonds were identified.
Finally, by using coarse-grained modeling and parameter
scanning techniques, the assembly of cellulosomal complexes
is shown to be dominated by their size and shape and not by
their mass.

© 2010 American Chemical Society
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Introduction

The most common processes for producing fuels from biomass require
fermentation by either yeast or bacteria after fermentable sugars are produced.
A new thrust in the field of cellulosic ethanol production is the study of
microorganisms capable of converting biomass directly to fermentable products
using a process known as Consolidated Bioprocesssing (CBP). Several organisms
are good candidates for such a task, including Clostridium thermocellum, which
produces large enzyme complexes known as cellulosomes. Cellusomes differ
from free cellulases in the sense that most of the catalytic enzymes are strongly
bound to a scaffolding protein.

The cellulosome concept was first introduced by Bayer and coworkers as
the cellulase system of C. thermocellum (1–3). In most cases, the cellulosome
is composed of two subunits – a non-catalytic scaffolding and the enzymes
that attach to it by a cohesin-dockerin mechanism. A strong interaction exists
between the multiple cohesin modules on the scaffoldin and the enzyme-borne
dockerin modules (4, 5). The primary scaffoldin of the cellulosome from C.
thermocellum, cellulosome-integrating protein (CipA), contains a carbohydrate
binding module (CBM), which binds strongly to plant cell wall polysaccharides
and nine cohesins, and is thus able to accommodate nine different enzymes. The
CBM modules are also present in some cellulosomal enzymes; for example, the
processive endoglucanase CbhA, a family 9 glycosyl hydrolase (GH9) (6, 7).

It has been recognized that different types of cohesins and dockerins exist
in different microbial species and that the recognition between cohesin and
dockerin is both type- and species-specific. Several research groups have used
these findings to try to understand and improve the action of cellulosomes using
a so-called “designer cellulosome” by assembling different types of cohesins
from different microbial species. Bayer and coworkers (1, 8, 9) used this idea
to probe two different questions: (1) do the enzyme patterns on the scaffoldin
provide a synergistic action on crystalline cellulose, and (2) is there the potential
to assemble enzymes from different species with superior activities on different
substrates? The first engineered cellulosome was composed of two cohesins
able to accommodate two cellulases (10, 11). The resulting chimeras exhibited
enhanced activity on crystalline cellulose over the same free cellulases. In 2005,
Fierobe and coworkers created a new tri-functional engineered cellulosome
by developing a third divergent cohesin-dockerin pair (12). The tri-functional
engineered cellulosome was found to be superior in function when compared
to the bi-functional one. When the tri-functional engineered cellulosome was
decorated with one hemicellulase (GH10) and two cellulases, it performed with
superior activity on both cellulose and hemicellulose in hatched straw.

Another aspect of great interest is the origin of the possible synergistic
functions of the cellulosome. One of the main explanations for the cellulosome’s
performance is the flexibility of its quaternary structure. It has been shown that
restricting enzyme mobility negatively affect cellulase activity, thus implying that
flexibility is a key ingredient in the function of the cellulosome (13, 14).

Molecular simulations are helpful for gaining a deeper understanding of
the function and versatility of the CipA assembly. Knowing the enzymatic
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Figure 1. Concept of the first coarse-grained model for the CipA of C.
thermocellum. The scaffoldin subunit (blue) contains nine cohesins and a

carbohydrate binding module. The cellulolytic enzymes (grey) bind to cohesin
partners with their dockerins. (see color insert)

environment necessary to attain a particular enzyme configuration on the scaffold
gives insight into the way a microbial cell regulates the cellulosome population
and composition near a cell wall. Probing the role of the plasticity of the
cellulosome on its dynamics and self-assembly process is also an important
goal. Determining the function and mode of action of the primary cellulosomal
enzymes and modules may help design an improved cellulosome with improved
activity. Several numerical modeling techniques can be used to answer these
questions, including the more detailed all-atom molecular dynamics simulations
to the less computationally expensive coarse-grained models.

Cellulosome Concept and Architecture

Cellulosomes from C. thermocellum can adopt different structures from the
simplest three to nine-cohesin scaffoldin proteins to the more complex assemblies
of multiple scaffoldin proteins organized on an additional scaffold, OlpB. In
this chapter, our discussion will be solely based on the nine-cohesin stucture of
CipA (Figure 1). A list of the CipA components and the cellulosomal enzymes
considered in this chapter can be found in Table I.

The linkers between CipA modules vary greatly in length and are important
contributors to the flexibility of the cellulosome. Cellulosomal enzymes can
have simple structures, including two modules (a dockerin and a catalytic
module) connected by a flexible linker, or be more complex with more than seven
modules. The cellulosome is believed to bind to cellulose with the CipA-borne
CBM3, but other complex enzymes whose architectures include CBMs are also
believed to provide additional anchors. Moreover, many cellulosomal enzymes
contain different types of carbohydrate binding modules, making them more
appropriate to handle different types of substrates. Some CBMs seem to have
an anchor function, whereas others have been hypothesized to be helper CBMs
capable of holding a single cellulose chain and feeding it to its catalytic module
partner (15). Several cellulosomal enzymes have protein modules with unknown
function, such as immunoglobulin-like modules that are believed to stabilize
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Table I. Architecture of the cellulosomal protein complexes

Protein Modules Molecular Mass (kDa)

CipA 2COH-CBM3a-7COH 197

Cel5B GH5-DOC 64

Cel48A GH48-DOC 83

CbhA CBM4-GH9-2FN3-CBM3b-DOC 138

the catalytic modules of family 9 enzymes. Fibronectin-like modules, also
known as X-domains, are another case of a protein module whose function in the
cellulosome is not understood. In general, fibronectins are believed to play the
role of cellulose disruptors and facilitate the digestion of cellulose.

Despite the number of different modules present in the cellulosome, its
quaternary structure is stable because of the high affinity between cohesins and
dockerins. As mentioned earlier, in C. thermocellum this affinity is non-specific,
and each dockerin can equally bind to any cohesin. The type I cohesin-dockerin
complex is shown in Figure 2. The recognition strip, involving two helices on
the dockerin and several beta strands on the cohesin, provides an almost planar
binding surface. This interaction is mediated by Ca2+, which is essential for the
complex to maintain structure (4, 16).

The cellulosome is an amazingly complex molecular assembly that can
degrade cellulose using a wide variety of enzyme combinations, which are
probably adjustable as the nature of the substrate changes. Any insight into the
formation and action of the cellulosome would help us understand the roles of
such complex systems in the natural degradation of cellulose and cell walls by
bacteria.

Function of Some Cellulosomal Modules
C. thermocellum produces a wide variety of enzyme families; among them,

the family 9 enzymes are intriguing because they contain both endoglucanase
and exoglucanases and can have rather complex architectures. They are divided
into four groups based on their constructs (17), groups A through D. Group A
includes enzymes containing only a catalytic module that can be linked to a
dockerin. In the case of Cel9M in C. cellulyticum (18), group B includes an
additional CBM3a located at the C-terminus (19). Group C includes enzymes
with an immunoglobulin-like module at the N-terminus of the GH9 (20) catalytic
module. Finally, group D includes enzymes that contain a CBM4 module and an
Ig-like module at the N-terminus of the GH9 (7) catalytic domain.

The immunoglobulin-like module found in several of the family 9 cellulases
from C. thermocellum, which belong to group C and D (Figure 3), is a protein
module without a well-known mode of action. One of the main hypotheses for its
mechanism is simply that it provides stability to the catalytic module. It has been
shown that removing the Ig-like module will reduce the activity of several catalytic
modules drastically (21). The mechanism by which the Ig provides this stability
is still uncertain; and, while a possible mechanism has been proposed, there is no
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Figure 2. Structure of the cohesin-dockerin complex from the cellulosome of C.
thermocellum (1OHZ) color coded by structures. (see color insert)

clear evidence supporting it. Several simulation techniques can be used to probe
the hypothesized mechanism (see next section).

Several family 9 enzymes from C. thermocellum exhibit an immunoglobulin-
like module attached to a catalytic module. Specifically, CbhA, Cel9A, and CelK
have been shown to lose most of their enzymatic activity upon removing the
Ig-like module. This Ig-like module consists of about 99 amino acids directly
attached to the catalytic module via a interface involving close to 40 amino acids
from both modules. Several studies have investigated the possible causes of such
a phenomenon in CbhA. One should note that only one x-ray structure each is
available for Cel9A and CbhA. Both structures exhibit the same construct, with
ten hydrogen bonds at the Ig-catalytic domain interface. However, only three of
the ten hydrogen bonds are conserved between CbhA and Cel9A. These three
hydrogen bonds are believed to contribute to the function of the Ig-like module
by stabilizing the catalytic module as well as the catalytic cleft. In both enzymes,
there exist hydrogen bond networks that appear to stabilize or at least mediate
catalytic residues. Both CbhA and Cel9A have a catalytic cleft with several
aromatic residues able to interact with, and thus guide, a cellulose chain (Figure
4).

The hydrogen bond network described for Cel9A is shown in Figure 5. Both
Thr-23 and Asp-51 form conserved hydrogen bonds with Gly-399; whereas Asp-
53 forms a strong hydrogen bond with Tyr-408, which is located on a flexible
loop connected to an important catalytic residue, Trp-410. Trp-410 is close to
the substrate cleavage site. The experimental work of Kataeva and coworkers
(in which Thr-23, Asp-51, and Asp-53 were mutated to alanyl residues) showed
that several mutants could be created in silico to analyze the importance of each
hydrogen bond on the dynamics and structure of the catalytic module. They also
analyzed the configuration resulting from the removal of the Ig-like protein.

Computational Methods

Several computational methods are well suited to study these systems and
span the different length scales and complexity present in cellulosomal systems.
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Figure 3. Constructs of CbhA and Cel9A.

Figure 4. Surface plot of the Ig-like protein (yellow) and GH9 (Blue) with
cellotetraose (white). (A) licorice representation is used to highlight the aromatic
residues in the catalytic cleft. (B) Blow-up of the aromatic residues located in

the catalytic cleft. (see color insert)

Here we present some strategies for using these methods to provide insight into
the potential improvement of CBP microorganisms.

Coarse-Grained Modeling of the Cellulosome Assembly

Advances in computer architectures and molecular mechanics packages have
allowed larger and larger simulations; systems with more than 100,000 atoms can
now be routinely simulated for hundreds of nanoseconds or microseconds (22).
Also, coarse-grained modeling has been a critical addition to the computational
techniques available when simulating larger macromolecular assemblies
representing millions of atoms by utilizing a reduction in the number of particles
by a factor of up to 10-20 (23–26). While these techniques are useful, they are
not well suited to the study of the formation of large macromolecular assemblies,
such as cellulosomes. To understand how the cellulosome assembles close to the
cell wall in a free-enzyme bath, we plan to conduct hundreds of simulations on
the timescale of hundreds of nanoseconds with more than 1 million atoms. We
will use the coarse-grained model proposed here to attempt to capture the most
essential properties of the cellulosome and predict how these intrinsic properties
will govern the enzyme configuration on the CipA scaffold. We also hope to gain
insight into the dynamics of the cellulosome during and after its initial formation.
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Figure 5. Structure of the catalytic (blue) and immunoglobulin-like (yellow)
modules from Cel9A. The hydrogen bonding network, including an important
catalytic residue, is shown in red and the three hydrogen bonds in green. (see

color insert)

Functional Form and Parameters

The protein structure model consists of large spheres, called “beads,”
representing large regions of protein volume, up to 30 Angstroms radius, that
are held together by a network of restraints to mimic the shape and flexibility of
globular proteins, dockerins, cohesins, and linkers. These beads have no charge,
and there is very little attractive potential between the beads. Each sphere, or
bead, represents from three amino acids for linker regions to tens of amino acids
in large globular protein regions. The restraints between beads are defined to be
as simple as single bonds between beads in a linker, to networks of bonds between
beads in globular-shaped protein modules. Special interactions are included to
mimic the attraction of dockerins for cohesins. The model was developed within
CHARMM (a molecular mechanics program package) (27). The CHARMM
package offers considerable flexibility to the user for creating new pseudo atoms,
has functionality for specific non-bond interactions between particular atom types,
and allows additional parameters to be specified in the topology and parameters
files.

Within our template, the interactions between coarse-grained beads can
be expressed as a sum of traditional classical bonded and non-bonded terms as
follows.

Non-Bonded Terms

The non-bonded interactions are represented by a 6-12 Lennard-Jones (LJ)
potential energy function,
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where rmin represents the closest distance of approach between two particles,
εij is the strength of their interaction, and r is the distance between two pseudo
atoms. The vdW radii are defined to accurately reproduce the radii of the module
represented by the pseudo atoms, and the interaction is defined to produce a
shallow LJ potential well, so as to avoid unnatural attractions between pseudo
atoms. The coarse-grained beads approximate hard spheres that have limited
interactions with one another.

The electrostatic effects were neglected in our model because of the limited
number of pseudo atoms or beads per protein (Figures 6−11). A specific
interaction was added between the pseudo atoms in the binding site of the cohesin
and dockerin proteins using an additional set of non-bonded parameters between
specific atom pairs. The binding energy was set to 13 kcal.mol-1, a value between
the experimental (12 kcal.mol-1) (5) and theoretically determined value of 14.5
kcal.mol-1 (28).

Bonded Terms

The bonded interactions are defined by the internal energy terms,

where r, θ, and φ are the distance, angle, and torsional angles between connected
coarse-grained beads; r0, θ0, and φ0 are the coarse-grained bond, angle, and
torsional angle equilibrium values; and kr, kθ and kφ are the force constants.
The force constants between beads of the same module are large, making the
substructure rigid, while inter-modular linker regions have a wide range of
flexibility. The distance, angles, and torsional angles were chosen to fit the
original (all-atom) structure.

Scaffold Subunit

The polymeric scaffold of C. thermocellum CipA, includes nine cohesin
proteins connected by linker peptides of 10–30 amino acids in length and
an additional carbohydrate binding module, CBM3 (Figure 6 and Figure 7).
To provide the flexibility of the all-atom structure, each linker bead in the
coarse-grained representation represents three amino acids (Figure 7). The
all-atom and the coarse-grained representations of the full-length CipA are shown
in Figure 7 and Figure 6, respectively. The linker regions offer the plasticity
required by the cellulosome to assume the most appropriate configuration given
a particular substrate. There is a clear need for a finer grained representation of
these linkers than the coarser grained representation of the other components.
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Figure 6. Coarse-grained representation of CipA from C. thermocellum. (see
color insert)

Figure 7. All-atom representation of CipA from C. thermocellum. The structure
of one of the cohesins is known and reported in the literature. The other cohesins

were obtained from homology modeling. (see color insert)

Cohesin and Dockerin

The cohesins have a flat binding surface able to interact with the dockerin
subunits of the cellulosomal enzymes. The architecture of the coarse-grained
cohesin was conceived to accurately describe the binding interaction and create
a flat binding surface while conserving the overall van der Waals volume of the
protein module (Figure 8). The dockerin is constructed with a mating flat surface
to match the cohesin. There are three special “attractor beads” in a row across
the center of the mating surface of the cohesin and dockerin that are given special
attracting properties for each other. The attractor beads are surrounded on the
backside of the mating surface by beads that prevent multiple bindings to the same
cohesin or dockerin simply by steric hindrance.

83

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

4

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 8. All-atom and coarse-grained representations of the cohesin from CipA.
(see color insert)

Figure 9. All-atom and coarse-grained representations of Cel48A. (see color
insert)

Cellulosomal Enzymes

As mentioned earlier, C. thermocellum is able to produce a wide variety of
enzymes with different architecture and complexity. Three of these enzymes were
selected in our study: the exocellulase Cel48A, the endoglucanase Cel5B, and
the processive endoglucanase CbhA. They essentially encompass the complexity
of the cellulosomal enzymes found in C. thermocellum. The construct details
for these enzymes and the scaffoldin protein can found in Table I. The linkers
between modules vary greatly in length, between 3–10 amino acids. Cel5B and
Cel48A have a rather simple architecture including a catalytic module, a linker,
and a dockerin. CbhA is a much more complex modular protein, including
modules with mostly unknown functions, such as fibronectin-like (7, 29) and
immunoglobulin-like modules (7, 21), as well as two types of carbohydrate
binding modules, CBM3b and CBM4 (7). All of the enzymes studied here have
a dockerin protein capable of binding to any cohesin on the scaffold without
specificity; and the coarse-grained model dockerins, similar to cohesins, have
an engineered flat binding platform. The coarse-grained representations of these
enzymes are shown in Figures 9−11 along with their all atom counterparts. Note
that the shape of the enzymes is accurately reproduced; and we should be able to
model some important properties in our simulations, such as volume exclusion,
mass effects, and flexible linkers.
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Figure 10. All-atom and coarse-grained representations of Cel5B. (see color
insert)

Figure 11. All-atom and coarse-grained representations of CbhA. (see color
insert)
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Experimental Setup

All simulations were conducted with the CHARMM package. We tried to
reproduce the enzymatic environment around the scaffoldin close to the cell wall.
The simulation box has a volume of 1x109 Å3 (1000Å x 1000Å x 1000Å) (Figure
12). The total enzyme concentration varies from 30–120 total enzyme molecules
per scaffoldin molecule and per box. The initial configurations were always
randomly generated, and different random seeds for both the initial positions and
the initial velocities were used to reproduce the random nature of the enzymatic
environment and to eliminate the possibility of biases in our results. Initial
simulations were performed with the full-length scaffold (9 cohesin). However,
for clarity, the second part of this study used a 4-cohesin scaffold. Periodic
boundary conditions employing a cubic box with sides measuring 1000 Å ensured
a fixed concentration of enzymes in each simulation. Non-bonded interactions
were cut at 99 Å, and the individual snapshots were registered every 1000 steps.
Each trajectory was equilibrated for 100,000 steps with a time step of 2 fs,
and trajectories were run for 30–100 ns. In our subsequent binding studies, we
performed 30 simulations of 30-ns duration for each different configuration in
which total concentration, ratio of enzymes, or binding constants were varied to
achieve meaningful statistical analysis.

Results and Discussion

First observations were made using a 9-cohesin scaffold in the simulation
box without any enzymes in solution. The scaffold adopts compact configurations
reminiscent of the TEM images by Mayer and coworkers (30). Starting from an
extended configuration, the scaffold tends to adopt a more compact form. In this
configuration, the scaffold may be more shielded from the outside, which might
explain results found by Bayer and coworkers (31). They showed that removing
enzymes docked on the scaffold was easier when the cellulosome was bound on
cellulose where it would adopt a more extended configuration, but much harder
when free in solution.

The second observations were made when enzymes were added to the system.
When an equal ratio of each enzyme is added for a total enzyme count of 60, the
scaffold is fully populated with enzymes within less than 50 ns. The behavior of
CipA is greatly modified whenever CbhA binds to a cohesin, which is caused by
the large mass of that enzyme; but is not as affected by the binding of smaller
enzymes. CbhA seems to lock the scaffold in a given location and prevents it
from freely diffusing through the box the way it did before binding occurred.
This behavior contributes to the nature of sequential binding of enzymes on the
remaining binding sites, because the scaffold will not be able to diffuse freely.
Also, the volume excluded by the first enzymes binding to the scaffold is a
contributing factor in defining the probability of other enzymes binding.

The main focus of this study was to understand the driving forces behind the
different cellulosome configurations. As mentioned above, we focused on a 4-
cohesin scaffold without the CBM protein. Some of the results from competitive
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Figure 12. Simulation box with a scaffoldin molecule and 60 cellulosomal
enzymes. The enzymes bound on the scaffold have solid colors. (see color insert)

Figure 13. Coarse-grained representation of a partially populated scaffold.
(see color insert)

binding studies between three cellulosomal enzymes are summarized in Table II.
CbhA tends to bind to the scaffoldin protein more significantly than Cel48A and
Cel5B. The size or flexibility of CbhA could be responsible for this behavior; and
subsequent studies varying size, mass, and radius of gyration of a given enzyme
will help to understand this phenomenon.

A detailed parameter scan of the total concentration of enzymes and enzyme
ratio is being conducted and will shine more light on the binding dynamics of these
enzymes that represent more than 1000 independent calculations. Response sur-
face methodology will be used to define the environment necessary for a particular
cellulosome configuration. Because of its modularity, it appears that the CbhA en-
zyme doesn’t diffuse as quickly as the Cel5B and Cel48A because of its increased
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Table II. Average cellulosome population arising from 30 replicated runs for
a given ratio of enzymes in the simulation box

Enzyme in solution
Cel5B/Cel48A/CbhA

(percentage)
33/33/33 41/41/18 50/50/0

Enzyme on the scaffold
(percentage) 20/25/55 33/36/31 45/55/0

number of internal motions and therefore has more time to “feel” a cohesin part-
ner. However, the results shown in Table II already indicate that this model could
provide great insights into the cellulosome self-assembly and how the cell might
regulate its scaffold configuration. There is even the possibility that the binding
behavior of CbhA could be linked to the expensive nature of its construction, and
that the cell doesn’t need to secrete large amounts of this enzyme to be significantly
present in cellulosomal assemblies.

Cellulosomes may attain their activity through their plasticity and special
arrangements of the enzymes on the scaffold. Coarse-grained modeling proved
to be an adequate tool to study these phenomena. However, more detailed
simulations are needed to truly understand the interaction of the cellulosome with
cellulose and the function of each individual protein involved in the hydrolysis
process. These proteins include catalytic modules, carbohydrate binding modules,
and modules such as the fibronectin-like or X domains. Several of these proteins,
such as the fibronectins, have an unknown function, and others seem to have
functions that differ from their fungal counterparts. In particular, several of the
cellulosomal CBMs seem to have a unique function. In the next section, we study
the family 9 enzyme of C. thermocellum, which contains many of these protein
modules with different physical and chemical properties.

Figure 14. First four normal modes of Ig-Gh9 modules for Cel9A. The structure
is color coded by amino acid sequence number. (see color insert)
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Figure 15. Stucture of Ig-Gh9 from Cel9A color coded by fluctuations (increasing
from blue to red) using the first 300 normal modes. (see color insert)

Normal Mode Analysis of Cel9A

Normal mode analysis (NMA) (32–35) provides a computationally
inexpensive way to study large-scale behaviors of molecular assemblies. NMA
has several advantages over classical molecular dynamics (MD), even though it
approximates the global potential by a harmonic function (34). First, it provides
a clearer representation of the collective motions of biomolecules through a few
of the lowest energy vibrational modes. Second, it makes evaluating entropy
contributions and other thermodynamic properties straightforward. Finally,
it is more affordable when long timescales are required for sampling times
sufficient to display the low-frequency modes. While it is common practice to use
elastic-network model or all-atom normal mode analysis in gas phase to approach
this problem, some of the finer details may be lost in the process. Recently,
NMA was extended to take advantage of the popular generalized born theory
for implicit treatment of solvation effects. This new implementation (36, 37)
was applied to long nucleic acid duplexes and was shown to accurately describe
large-scale properties of these duplexes (37). The same method can be used as
a first approach to gather information about the possible function of the Ig-like
module as well as the mechanism by which GH9 endoglucanases may acquire a
cellulose chain before hydrolysis of the 1,4-beta-D-glucosidic linkage.

The normal mode analyses were carried out with the molecular mechanics
program package NAB (38, 39), now part of Amber10 (40, 41) ambertools
using the parameter set parm99SB (42, 43); and we used the pairwise
approach of Hawkins and coworkers for the Generalized Born (GB) model
(44, 45). The structures were minimized using the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno Truncated Newton Conjugate minimization
technique to obtain a root mean square (RMS) gradient below 1 x 10-8 kcal/mol-Å.
This level of convergence is necessary to avoid contamination from translational
and rotational modes into true internal modes. The diagonalization of the
Hessian matrix was done using the ARPACK (46) routines in combination with a
Cholesky decomposition and inversion of the Hessian matrix, therefore providing
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a better separation of the eigenvalues to enhance convergence. The analysis of
the normal modes was performed with a modified version of the program PTRAJ
with additional functionalities. The first four normal modes of the Ig-GH9
module are shown in Figure 14 using a porcupine representation. It is commonly
acknowledged that the first 10-20 normal modes are enough to describe the
large-scale dynamics of a given molecule. Twenty normal modes were enough
to converge the root-mean square fluctuations (RMSF) shown in Figure 16, and
the first five modes dominate the fluctuations. The most dominant mode (mode1)
shows a hinge motion opening the catalytic cleft around the substrate chain. The
dominant motion could shine some light on the possible mechanism by which the
enzyme acquires a cellulose chain before catalysis. The other normal modes are
more localized, but still show a lot of motion at the bottom of the cleft as well as
the flexible nature of the Ig module with respect to the CD module and within
itself. Also shown is another hinge motion between the Ig and CD modules, with
the hinge being the linker between the two modules. Figure 15 shows the flexible
regions of the Ig-CD construct for Cel9A as determined from residue fluctuations.
CbhA exhibits the same basic frequency modes and overall fluctuations as Cel9A.
The high flexibility regions include loops and alpha helices at the bottom of the
catalytic module close to the substrate. The atomic fluctuations calculated using
the normal modes for Cel9A agree with with the atomic fluctuations calculated
from crystallographic temperature factors βi using Equation 3 and are compared
in Figure 16.

While the amplitudes of the fluctuations are not necessarily important, in
contrast the relative fluctuations are a more relevant comparison to b-factors. In
this case, they describe the main features well. The relative fluctuations agree
with experimental measurements of B-factors. This is reassuring and supports the
accuracy of the NMA protocol used here.
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Figure 16. Atomic fluctuations for Ig-Gh9 (Cel9A-1CLC) from crystallographic
temperature factor and from normal mode analysis using the first 300 normal

modes. The amplitutes are in Angström.

The eigenvalues and eigenvectors can also be used to describe the correlation
of motion of different protein modules. This is described by Equations 4−6
where dik and djk are the vector displacements for the kth mode and atom i or
j, respectively. The cross-correlation maps of Ig-GH9 calculated for Cel9a are
shown in Figure 17. The immunoglobulin-like module shows a strong correlation
of motion within itself, probably due to the fact that it is composed of beta strands
with strong interactions. One of the most interesting features of these maps is the
fact that the Ig module, or at least several residues within the module, appear to
have a strong correlation of motion with several residues of the catalytic module,
including a strong positive correlation with residues 389 to 410 and also several
other important loops within the vicinity of the catalytic cleft. This supports
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the hypothesis that these loops are closely coupled with the Ig module and that
the removal of Ig or selected mutations in Ig may interfere with the dynamics
of the catalytic residues, especially amino acid 410. However, a more careful
investigation is required to unambiguously prove the function of the Ig module.
NMA at least shows that the hypothesis mentioned earlier is relevant and deserves
to be studied with a more time-consuming method such as MD simulations.

Figure 17. Residue cross-correlation map of Ig-Gh9 for Cel9A. A value of 1
shows a correlation of motion, while -1 is indicative of anti-correlation of motion,
and zero represents a total lack of motion correlation. This map was calculated

using the first 300 normal modes. (see color insert)

Molecular Dynamics Simulations

MD simulations were used to address the aforementioned problem – the
function of the Ig module in several family 9 enzymes – in more detail using
a set of analysis tools demonstrated in similar studies (47). All simulations in
this section were carried out using the program, PMEMD, from Amber 10 and
the parameter set parm99SB (42, 43). The proteins were solvated in a truncated
octahedral box of TIP3P water molecules extending to 12 Å from the surface of
the protein. A simulation time step of 2 fs was used along with SHAKE (48) to
constrain covalent bonds between heavy and hydrogen atoms. The particle mesh
Ewald method was used along with a non-bonded cutoff of 12 Å. The calcium
ions were kept in their original positions from the pdb files, and the parameters
usec for the calcium ions were taken from Aqvist (49). After equilibration,
15 ns of unconstrained MD were performed for dynamic sampling of states.
Three replicates of the same starting configuration were run with different initial
velocities to check the convergence of the fluctuations and other properties
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extracted from the trajectory and to insure proper statistical sampling. Removing
the rotations and translations from the trajectories was done by rmsd, fitting the
trajectory to the backbone of the entire protein in its initial post-equilibration
configuration. Using a selected area of low mobility of the protein as inferred by
NMA for rmsd fitting resulted in comparable findings. However, closer inspection
of the cross-correlation map in Figure 19 shows that the rms fitting procedure is
of crucial importance – as Ichiye and Karplus pointed out (50) – where a poor
choice of rms fitting parameters can result in a loss of details in such map. It was
clear from the map computed in this work that even the best set of parameters
does not offer as much constrast as provided by normal mode analysis.

Figure 18. Atomic fluctuations for Ig-Gh9 (Cel9A-1CLC) from crystallographic
temperature factor and from 15ns of molecular dynamics simulation.
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Figure 19. Residue cross-correlation maps of Ig-Gh9 Cel9A from 30 ns of
molecular dynamics simulations. A value of 1 shows a correlation of motion,
while -1 is indicative of an anti-correlation of motion, and zero represents a total

lack of motion correlation. (see color insert)

The RMS fluctuations of the Cα atom of the wild-type Ig‑GH9 are in as good
agreement with those calculated from crystallographic temperature factors (Figure
18) as the fluctuations calculated from the normal mode analysis. The fluctuations
from the three replicas are almost indiscernible, except for a few flexible loops
where the results are not as consistent. Given the overall consistency of the results,
any difference in fluctuations caused by mutation can be linked to the effect of
the mutation. It is worth noticing that the fluctuations calculated from MD are
overestimated, as is always the case in the literature.

Before starting experimental mutational studies, it is important to know
which amino-acid residues are most likely to impact the structure or dynamics
of the catalytic module. As mentioned earlier, three hydrogen bonds in Cel9A
at the Ig-GH9 interface are conserved but their respective stability is unknown.
The analysis program, PTRAJ, was used to follow the stability of those hydrogen
bonds during 15 ns of MD simulations (Figure 20). It appears that only Asp-53
is able to create strong hydrogen bonds between the Ig and CD module in Cel9A.
Thr-23 is also able to create a stable hydrogen bond in Cel9A. This analysis shows
that Asp-51 is unable to strongly interact with the catalytic module as previously
thought. It appears that only one or two of these conserved hydrogen bonds
are good candidates for mutagenesis. A similar investigation for the remaining
hydrogen bonds is being conducted; and even though these hydrogen bonds
are not evolutionarily conserved, they most likely contribute to the interaction
between Ig and the catalytic cleft.

94

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

4

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 20. Distance between atoms involved in several hydrogen bonds between
the Ig and catalytic modules over 15ns of simulation for Cel9A.

Figure 21. Atomic fluctuations for Ig-Gh9 (Cel9A) for the wild type and after
ablation of the Ig module from 15ns of molecular dynamics simulation. (see

color insert)

The effect of the extreme case of the Ig module’s total removal is shown in
Figure 21, where the fluctuations of the Cα atoms for Ig-GH9 and GH9 in Cel9A
seem to present interesting differences in the vicinity of residues 390 to 425 as
well as other less relevant loops. The features of the fluctuations appear to be
substantially different and are not only restricted to a difference in the amplitude
of a single peak. It would be encouraging to see the same behavior in some
of the mutational studies for conserved or not conserved hydrogen bonds, as it
would validate the hypothesis presented here. It is clear that dynamics of some
of the residues inside the catalytic cleft are being perturbed, although it is not
yet clear how this could affect the correct functioning of the enzyme. Substantial
conformational changes have not been observed in these rather short simulations.
Longer simulations with a generalized born model are being conducted as well
as clustering analysis of the trajectory to better understand the difference in states
visited for the wild type and mutated enzyme.

Conclusions
Whereas the results from normal mode analysis and molecular dynamics

simulations to date are not enough to provide a definite answer about the
function of the immunoglobulin-like module or the mode of action of the
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GH9 endoglucanases, they do seem to show the close relationship between the
catalytic cleft and the Ig module. These computational tools demonstrate that the
hypothesis presented several years ago is viable and that more careful analysis of
this problem is not only needed, but worthwhile. Understanding the function of
each individual protein (modules) of the C. thermocellum cellulosome is essential
for improving the microorganism’s performance in terms of biofuels production.
Such understanding would impact both the improvement of the enzymes as well
as cellulosomes.
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Chapter 5

Meso-Scale Modeling of Polysaccharides in
Plant Cell Walls: An Application to Translation

of CBMs on the Cellulose Surface

Lintao Bu,1,* Michael E. Himmel,2 and Mark R. Nimlos1

1National Bioenergy Center, National Renewable Energy Laboratory,
Golden, CO 80401

2Biosciences Center, National Renewable Energy Laboratory, Golden,
CO 80401

*Lintao.bu@nrel.gov

A coarse-grained model and force field for simulating cellulose
Iβ surface (1,0,0) was derived, in which each β-D-glucose unit
is represented by three beads. The coarse-grained model can
reproduce a stable cellulose (1,0,0) surface with an excellent
agreement with an all-atom model. When used to study
the interaction of the family 1 carbohydrate-binding module
(CBM1) with this cellulose surface model, the CBM “opens”
as in earlier atomistic simulations. This cellulose Iβ surface
model produces simulations in which the CBM translates along
a broken cellodextrin chain. This processive motion of the
exoglucanase cellobiohydrolase I has long been suggested by
experimental studies, but has never before been observed in
computer simulations.

Introduction

Utilizing biomass as a renewable energy resource typically requires degrading
the plant matter into component chemicals that can be subsequently used for
biochemical or thermochemical processes. However, because of the recalcitrance
of biomass to deconstruction, the process of producing fuel ethanol from biomass
sugars via fermentation has remained costly (1, 2). Because the high cost of
cellulase enzymes is a key factor in this process, a deeper understanding of

© 2010 American Chemical Society
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the plant cell wall structure and the mechanisms of enzymatic degradation of
cellulose plays a critical role in enabling a successful bioethanol industry (3).

At a molecular level, biomass can be divided into three main chemical
components: cellulose, hemicellulose, and lignin. Understanding the chemical
and ultrastructural details about the cell wall microfibrils is important for
improving deconstruction. It is commonly thought that plant cell wall microfibrils
are composed of a crystalline cellulose core coated with hemicellulose, a system
that prevents cellulose microfibrils from self-association after their biosynthesis,
and enables the formation of a strong yet flexible plant cell wall by crosslinking
the microfibrils (4–6). Many deconstruction procedures involve stripping away
the hemicellulose by hydrolyzing using acid or enzymes, leaving the crystalline
cellulose core to be hydrolyzed by cellulases. Thus, understanding the chemical
composition and interactions between microfibrils is essential to improving
biomass conversions.

Cellulose is the primary structural polysaccharide of plant cell walls,
containing glucose monomers linked by β-1,4 glycosidic bonds. Cellulose can
vary from elementary fibrils in plants, containing around 36 cellodextrin chains,
to the large macrofibrils of cellulosic algae, containing more than 1200 chains (7).
The glucan chain length can vary from about 2000 to more than 15,000 glucose
residues (8–10). The microfibril size from different plant tissues and species is
estimated to be from 2 to 10 nm in diameter and can be as long as several microns.
Although many important features of plant cell walls are at this meso scale, 10
nm to 1 µm, chemical analysis using existing experimental tools is not yet able
to study such systems.

Molecular dynamics simulation is a very powerful tool for studying
carbohydrate properties because it provides valuable structural, kinetic, and
thermodynamic information (11–17). However, traditional computational
modeling of realistic cellulose structures in water is prohibitively time-consuming
because of the relatively large number of atoms per glucose residue. For example,
existing atomistic molecular dynamics calculations using CHARMM (18, 19)
require approximately 2000 hours and 250 processors to obtain 10 ns of molecular
dynamics simulation time for a system that contains one million atoms. This is
a system that is approximately 10 x 10 x 50 nm, containing 32 cellulose chains,
each 100 glucose residues long. To expedite the calculations, lower resolution
models of cellulose need to be developed to reduce the system size dramatically.

To study large macromolecular systems at longer time scales than
are accessible by atomistic simulations, coarse-grained models of these
macromolecules are usually developed. In coarse-graining, a group of atoms is
replaced by a single bead or particle (20–22). In carbohydrates, the monomer
sugars are typically fairly rigid; and the interactions between sugars are well
known. For instance, glucose monomers within the cellulose exist mainly in
the chair conformation with equatorial hydroxyl groups. Coarse-graining the
glucose by replacing each glucose unit with a few beads can significantly reduce
the interactions that need to be calculated, while preserving the essential features
of the glucose monomer in the cellulose. In a coarse-grained model, the beads
go through some critical interactions that are more computationally efficient
when compared to the atomistic interactions. Combining the efficient potential
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energy surface while reducing the system size results in significantly improved
computational speed.

The non-catalytic carbohydrate binding modules (CBMs) are recognized as
an essential component of effective cellulase action on the cellulose (23). CBMs
are classified into 55 families based on their sequence identity (www.cazy.org) and
7 fold families based on the structural similarity (24). CBMs are proposed to have
three primary functions: proximity effects (23), substrate targeting (25–30), and
microcrystallite disruption (31). By binding to the cellulose surface, CBMs can
promote the association of the enzyme with the substrate and increase the effective
cellulase concentration (proximity effect). CBMs also have selective affinities for
various soluble and non-soluble carbohydrates (targeting function). In addition,
some bacterial CBMs are thought to modify the cellulose structure to render the
substrate more susceptible to enzyme function (disruption function).

Family I CBMs, which are entirely fungal, are especially interesting.
Of particular interest is the cellobiohydrolase (CBH) I CBM produced by
Trichoderma reesei (T. reesei, also known as Hypocrea jecorina), the most
common source of commercial cellulases today. CBH I contains a Cel7A catalytic
domain and a family 1 carbohydrate-binding module separated by a highly
glycosylated linker peptide. CBH I is thought to be processive, moving along a
crystalline cellulose chain, pulling up that chain and feeding it into the catalytic
domain tunnel where cellobiose is produced by hydrolyzing alternate β-(1,4)
glycosidic linkages (32–34). The processivity of CBHs makes them critical for
bioprocessing crystalline cellulose found in plant cell walls. However, details of
the different component functions of these enzymes during processivity remain
unclear. It has been postulated that the linker domain plays a role in pushing the
binding domain along a cellodextrin chain on the cellulose surface as the chain
being hydrolyzed advances further into the active site tunnel of the catalytic
domain. It is also possible that the linker peptide serves as a hinged “spring,”
storing energy and pulling the catalytic domain towards the binding domain, thus
propelling the cellulose chain further into the active site tunnel.

Computational modeling of CBMs holds promise for understanding
molecular function, but there has been limited effort in this area. Early atomistic
molecular dynamics modeling investigated the CBM from CBH I in solution
and on a cellulose surface in the absence of solvent (35, 36). Molecular docking
calculations were used to investigate the possibility that the CBM works its way
under a strand of cellulose (37). Recently, Nimlos and coworkers used atomistic
molecular dynamics simulation to investigate the interaction of CBM1 from T.
reesei CBH I with a model of the cellulose surface modified to display a broken
chain (38). Their results suggested that tyrosine residues on the hydrophobic
surface of the CBM, specifically Y5, Y31, and Y32, make contact with the
cellulose surface; and the fourth tyrosine residue in the CBM (Y13) moves
from its internal position to form hydrophobic interactions with the cellulose
surface. Thus, the structure of CBM1 changed from the native “closed” state to
an “opened” state during the simulation.

A shortcoming of atomistic molecular modeling of this CBM and a cellulose
substrate is that long simulations are necessary to obtain biologically relevant
information; and if explicit water is used, these calculations can be prohibitively
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time consuming. Recently, Bu and coworkers attempted to overcome this barrier
by developing a coarse-grained model for the cellulose substrate (39). Molecular
dynamics simulations of this coarse-grained cellulose with an atomistic CBM and
implicit water solvent enabled long simulations and appeared to show interesting
behavior of the CBM on a cellulose substrate with a broken chain. The CBM
appears to process along a cellulose strand away from the reducing end. This is
consistent with the hypothesized motion of the CBH I complex, but this is the first
indication that the CBM may contribute to this motion.

In this chapter, we will discuss some additional observations derived
from molecular modeling concerning the interactions of family 1 CBMs with
coarse-grained cellulose models. This work will demonstrate how long time-scale
simulations allow the investigation of protein/carbohydrate interaction events
that are not accessible using atomistic simulations. The remainder of this
chapter is organized as follows. In the next section, a brief review of the
available coarse-grained models for carbohydrates and a detailed description
of our new coarse-grained model for cellulose (1,0,0) surface are presented.
(We note this new coarse-grained model was developed to study the cellulose
hydrophobic surface and not suitable for other surfaces, as well as the entire
crystalline cellulose. For details, see Ref (39).) Subsequently, the coarse-grained
model of cellulose is used to study the translation of family 1 CBM1 along a
broken cellulose chain on the (1,0,0) surface. For these studies, we used both
atomistic models of CBM1 from two exoglucanases – CBH I and CBH II – and a
coarse-grained model of CBM1 from CBH I. A short look at the future prospects
of the coarse-grained modeling of plant cell walls concludes this chapter.

Method

Coarse-Grained Model of Carbohydrates

The interactions between coarse-grained beads can be expressed as a sum of
bonded and non-bonded terms,

where r, θ, and φ are the distance, angle, and torsional angle between connected
coarse-grained beads, r0, θ0, and φ0 are the coarse-grained bond, angle, and
torsional angle equilibrium positions, and k, kθ , and B are the force constants.
All of these parameters must be defined before the coarse-grained force field
can be used in the molecular mechanics calculations or molecular dynamics
simulations. Recently, two distinct coarse-grained models for carbohydrates have
been developed, largely differing in how the non-bonded parameters are derived.
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Figure 1. Parsing of the atomistic cellulose residue model among coarse-grained
beads (A). The positions of the coarse-grained bead centers of mass correspond
to the positions of the carbons C1, C4, and C6 in the atomistic model. The
three beads in each glucose unit are connected by coarse-grained bonds. The
fourth coarse-grained glycosidic bond links the glucose units in a cellulose
chain. The atomistic model and coarse-grained model of a cellodextrin chain
(B) and an elementary fibril (C) demonstrate the reduction of the system size.

(see color insert)

Molinero and Goddard developed the first coarse-grained model, M3B,
for malto-oligosaccharides, using three beads to replace each glucose unit
of oligosaccharides and one bead to represent each water molecule (40–42).
The bonded interactions were derived from Boltzmann statistical analyses of
malto-oligomer atomistic trajectories in the condensed phases over a wide range
of pressures. The non-bonded interactions were described with a two-body
Morse potential, and the parameters were fitted from specific thermodynamics
properties of glassy glucose. The M3B model was able to reproduce several
properties of oligosaccharides, such as excluded volume, distribution of torsional
angles, structures of left-handed and right-handed helices, and glass transition
temperatures. Because neither charges nor hydrogen-bonding interactions
were included in the M3B model, it was extremely efficient and resulted in
an approximately 7000-fold acceleration of molecular dynamics simulations
compared to an atomistic model.
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Subsequently, Liu and coworkers derived a coarse-grained model for
monosaccharide in aqueous solution using a systematic multiscale coarse-graining
(MS-CG) algorithm (43). The non-bonded interactions were directly derived
from the force-matching approach. Their MS-CG model was able to reproduce
many structural and thermodynamic properties in the constant isothermal-isobaric
ensemble (NPT). In this model, long-range interactions were effectively mapped
into short-range forces with a moderate cutoff and were evaluated by table lookup,
which led to molecular dynamics that was three orders of magnitude faster than the
atomistic simulations. Although the model was derived at a single temperature,
pressure, and concentration, it was transferable to other thermodynamics states.
However, because their coarse-grained model was derived from α-D-glucose
solution at one specific concentration, it was not transferable to other saccharide
systems without modifications. Despite this, their MS-CG method is general and
can be readily applied to other systems.

Although these coarse-grained models are very useful in simulating lengthy
oligosaccharides over long times, they are not transferable to crystalline cellulose
because of the significant structural difference between oligosaccharides and
cellulose. To our best knowledge, no coarse-grained model has been derived
for crystalline cellulose. Molecular dynamics simulation studies of crystalline
cellulose have focused on using all-atom models (11, 44, 45).

Coarse-Grained Model of Cellulose

Recently, we developed a coarse-grained model and force field for the
cellulose Iβ(1,0,0)surface (39). Similar to the M3B model (41) developed
by Molinero and Goddard to represent oligosaccharides in solution, the
coarse-grained model we proposed here also uses three neutral beads to represent
each glucose unit and deposits the beads to the positions corresponding to the
atoms C1, C4, and C6 in the atomistic model (shown in Figure 1). The mass of
each bead is the sum of the mass of the atoms that the specific bead replaced.

The bonded parameters were derived directly from Boltzmann inversion
of the bond, angle, and torsional angle distributions of the atomistic simulation
of crystalline cellulose in water, which can provide the detailed dynamics
information of the positions of atoms C1, C4, and C6. For example, Figure 2
plots the distribution of distances between atom C1 and atom C4 obtained from
the atomistic simulations. A Gaussian function was used to fit this distance
distribution to extract the equilibrium bond distance (i.e., 2.89 Å) and force
constant for the virtual chemical bond between coarse-grained bead 1 and bead 4.
This approach was used for all of the coarse-grain bonding interactions (bonds,
angles, and dihedrals).

The non-bonded interaction between coarse-grained beads was represented
by a Lennard-Jones potential. The depth of the potential energy well, D0,
was taken from the M3B model; and the distance R0 was determined by the
distance between two corresponding atoms in the atomistic model. Because the
non-bonded parameters in the M3B model were derived based on the amorphous
α-glucose structure, they are not transferable to the crystalline cellulose. To
mimic the strong hydrogen-bonding interactions within a layer and the weak
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Figure 2. Bond length distribution for coarse-grained bond B1-B4 during
atomistic simulation. Solid circles represent sampled values of the distance
between two atoms C1 and C4 in the atomistic simulation. The solid line

represents a fitted Gaussian function.

hydrophobic interactions between layers of cellulose, the interactions between
different bead types were scaled by distinct factors. The attractive component
between backbone beads (bead 1 and bead 4) and side chain beads (bead 6) was
scaled by a factor of 1.5, while the backbone – backbone interaction was scaled
by a factor of 0.1, and the side chain – side chain bead interaction was scaled by a
factor of 0.2. See Ref (39) for details on how these rescaling factors were chosen.
We confirmed that this force field was able to reproduce a stable structure of Iβ
crystalline cellulose surface (39).

Using the cellulose bead model described here resulted in a significant
decrease in the particles considered in the cellulose substrate, but further
refinements were required to allow the long time-scale modeling necessary for
studying protein action. Converting from an atomistic model of cellulose to the
bead model resulted in a factor of 8 reduction of particles. However, the number
of water molecules also needed to be reduced. In typical atomistic simulations,
the number of explicit water molecule atoms is approximately two to three times
the number of substrate and protein atoms. Coarse graining of water molecules
to a single bead only reduced the number of particles by a factor of 3. As a
result, an implicit solvent GBSW module (46, 47) in CHARMM was used in all
simulations discussed here. This effectively eliminated water molecule particles
from the calculations and resulted in a total particle reduction from the atomistic
simulation by a factor of approximately 20. Furthermore, in our simulations of the
CBM with a coarse-grained cellulose, we found that using an implicit solvent had
little effect upon the processive behavior of the CBM. This result was confirmed
by a recent molecular dynamics simulation of cellulose atomistic models and
CBM using explicit solvent, showing a similar behavior of CBM translating on
the cellulose surface during a 100-ns simulation (48).
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Figure 3. Comparison of an atomistic model (A) and a coarse-grained model
(B) of CBM1. In the atomistic model, the CBM is shown in backbone ribbon
representation with four tyrosine residues shown in stick representation. In the
coarse-grained model, four tyrosine residues are shown as red beads. (see

color insert)

Coarse-Grained Model of CBM

To further simplify the calculations of the CBM interacting with cellulose,
in some simulations we used a coarse-grained model (Go model) of the protein.
The Go model has long been used in theoretical studies of protein folding (49),
in which each amino acid is represented by a single bead. In many early studies,
the protein chain was modeled using two types of beads, one hydrophobic bead
and one polar bead (50–52). Others also used between 3 and 20 types of beads
in an effort to better capture the variability in the chemical nature encoded with
protein side chains (53, 54). Such coarse-grained models require identification
of all possible contacts as either native (existing in the native structures) or non-
native. Subsequently, a set of potentials is constructed in which native contacts
are favorable, and non-native contacts are less favorable. Such a potential could
significantly smooth the potential energy landscape and result in a faster protein-
folding dynamic without contributing to the conformational search. Go models
have been used in several studies at various resolution levels.

A Gomodel of the CBMwas built using the GoModel Builder server (55–57)
at MMTSBWeb Service (58). The protein backbone was represented as a string of
coarse-grained beads connected by virtual chemical bonds. Each bead represents
a single residue and is located at the position of the corresponding α-carbon atom.
All bond lengths were fixed, whereas bond angles were subject to a harmonic
restraint, and dihedral angles were subject to potentials representing sequence-
dependent flexibility and conformational preferences in the Ramachandran space.
Non-bonded interactions were calculated using a Gomodel (i.e., only residues that
were in contact in the native state interact with each other favorably). Residues
not in contact in the native state interacted via a repulsive volume exclusion term.

Because the Go model potential is biased to the initial structure of a protein,
the unfolding of the loop containing tyrosine 13 would not be observed if the
native structure (i.e., the “closed” structure of CBM) was used to build the Go
model. Therefore, we used an “opened” structure of CBM to generate the Go
model. Figure 3 illustrates the comparison of an atomistic model and a Go model
of the CBM. Using the Go model to investigate the interactions of CBM1 with
coarse-grained cellulose is discussed in the next section.
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Applications
CBM1 Translation on Cellulose Surface

Molecular dynamics simulations of an atomistic CBM from CBH I on
a coarse-grained cellulose suggest that, when placed near a broken chain of
cellulose, this CBM spontaneously translates along the strand away from the
reducing end of the break. This motion is consistent with the processive motion
of the entire CBH I enzyme complex. During procession, the reducing end of
a broken strand is fed into the catalytic tunnel of the catalytic domain. The
commonly accepted structure of CBH I has the CBM in front of the catalytic
domain, tethered by the linker (59). During procession, the CBM would be in
front of the catalytic domain and would be moving along the chain away from the
reducing end. Thus, the simulations are consistent with the anticipated action of
CBH I, but the unique suggestion here is that the CBM processes along the chain
in the absence of the rest of the protein complex.

All simulations in this study were conducted using the CHARMM suite
of software. A cellulose slab was generated containing four sheets, with four
cellulose chains in each sheet, and 20 glucose residues in each chain. An atomistic
model of the CBM was derived from a nuclear magnetic resonance (NMR)
structure (60) and was then positioned above the hydrophobic cellulose 1β surface
(1,0,0). This is believed to be the target of this CBM (61), and its hydrophobic
face was positioned so that the three tyrosine residues (Y5, Y31, and Y32) were
within 3 Å of the (1,0,0) cellulose surface. The simulations of atomistic CBM1
interacting with coarse-grained cellulose, as discussed here and subsequently,
were conducted using a GBSW implicit solvent model.

During the first 200 ps of simulation on a cellulose surface with no broken
chains, tyrosine Y13 moved from its internal location in the CBM and formed a
contact with the cellulose surface. These simulation results support the hypotheses
proposed by Nimlos and coworkers that an induced change of CBM1 near the
cellulose surface plays an important role in cellulose recognition. These results
also suggest that the surface of the coarse-grained cellulose model contains the
same essential elements for CBM recognition as does the surface of the atomistic
cellulose model. The coarse-grained simulation was continued for 40 ns, during
which time no net forward movement of the CBM was observed. The motion of
the CBM is due to the random diffusion instead of processive translation on an
unbroken crystalline cellulose surface.

As mentioned above, CBH I recognizes the reducing end of an already broken
cellodextrin chain and processively digests that chain. To simulate a cellulose
surface containing a broken chain, a cellodextrin chain in the top sheet of the
cellulose slab was hydrolyzed between the fourth and fifth glucans (g4 and g5
in Figure 4A) by deleting the coarse-grained bond between these two residues. In
the initial conformation, the CBM was placed in front of the broken chain with
tyrosine residue Y13 above the fifth glucan, which is a reducing end. The distal
end of the CBM (the end that connects to the linker) faced the reducing end of the
broken chain.

As shown in Figure 4A, we observed significant forward movement of the
CBM in molecular dynamics simulations on a slab with a broken cellodextrin
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Figure 4. Plots showing details of the processivity of CBM1 during molecular
dynamics simulation. The CBMs of CBH I (A) and CBH II (B) translate on the
cellulose surface in the opposite directions when a chain was broken. For the
purpose of clarity, only the top sheet of the cellulose slab is shown. CBM is
shown in backbone ribbon representation with four tyrosine residues shown in
stick representation. The gap between the two blue glucose residues (the 4th and
5th glucose residues in A, and the 16th and 17th glucose residues in B) indicates
the position where a chain was broken. Yellow glucose residues represent the
7th, 9th, and 11th glucose units in A, whereas the 10th, 12th, and 14th glucose units

in B. (see color insert)

chain. The CBM remained at its initial position for about 5 ns before moving
to the next position, about 10 Å away from the reducing end with Y13 over the
seventh glucan. In this new position, the CBMhas advanced by one cellobiose unit
down the chain. After staying at this new position for another 10 ns, the binding
module moved another 10 Å down the chain. Interestingly, Y13, Y31, and Y32
remained roughly aligned with the cellulose chains during these jumps. The three
tyrosines that are part of the hydrophobic face on the CBM (Y5, Y31, and Y32)
in the closed form are spaced roughly equidistant to the spacing of cellulobiose
units in cellulose. It is tempting to assume that these three tyrosines align with
the cellulose chain. These simulations seem to suggest that the fourth tyrosine
(Y13) along with Y30 and Y31 can also align with the cellulose. After the second
jump, this simulation was then extended for another 25 ns, but no further forward
movement down the chain was observed.
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To determine if the movement described above was in response to a reducing
end of a cellulose chain, another simulation was conducted in which CBM
was placed on the cellulose surface facing in the opposite direction and on the
non-reducing side of the break in the cellulose chain. In other words, the CBM
was rotated by 180° along the (1,0,0) surface normal compared to the previous
simulations. In the initial conformation, the CBM was in front of a broken chain
with tyrosine Y13 above the sixteenth glucan (see Figure 4B). Although this
figure shows the positions of CBM1 from CBH II instead of from CBH I, the
CBM1 of CBH I was positioned at the same location on the cellulose surface. In
this case, the distal end of the CBM faced the non-reducing end of the broken
chain. During the 25-ns simulation, the CBM remained associated with the
cellulose surface in a manner similar to the unbroken chain simulation. However,
no net forward movement along the chain towards the reducing end was observed.
This result supports the hypothesis that CBH I recognizes the reducing end of a
broken chain and translates processively down that chain away from the reducing
end of a cellulose chain.

Comparing the CBM1s of CBH I and CBH II

The cellobiohydrolase CBH II (Cel 6A) is also produced by the fungus T.
reseei, but this processive enzyme hydrolyzes from the non-reducing end of a
cellulose chain. The CBH II structure is very similar to that of CBH I in that they
both have a binding module, a catalytic domain, and a linker. Further, the binding
domain from CBH II is also from family 1 of the carbohydrate binding modules,
and its sequence has a 76% homology with the CBM from CBH I. CBH I and CBH
II are key components for efficient enzymatic conversion of biomass to ethanol
and have been of interest for years. It is widely believed that these two enzymes
move in opposite directions along the cellulose surface (i.e., the CBH I recognizes
the reducing end of a broken chain and processively translates from reducing end
towards non-reducing end, whereas CBH II recognizes the non-reducing end of a
broken chain and translates towards the reducing end, even though their CBMs are
essentially identical). Interestingly, the amino acid sequence of domains for these
two enzyme families is exactly reversed (i.e., CBH I has the catalytic domain on
the N-terminus and CBH II has its catalytic domain on the C-terminus).

To conduct simulations of CBM1 from CBH II, a structure of this protein
was needed. Because there was no structure available in the literature, we
built one by threading the backbone of this CBM onto the known structure
(“closed” state) of the CBM from CBH I using the Swiss-Prot web server
(http://www.expasy.ch/sprot). The high degree of homology between these
proteins lends confidence in the structure obtained this way. The sequences of
these binding modules are compared in Figure 5A. As can be seen, the four
aromatic binding residues in CBM1 of CBH I are all tyrosines (Y5, Y13, Y31,
and Y32), while two are tryptophans in CBM1 of CBH II (W5, W13, Y31,
and Y32). Presumably, mutation of a tyrosine residue to a tryptophan residue
increases the binding affinity of CBM to cellulose surface. However, it is also
suggested that the binding affinity of CBH I has been balanced for optimal
performance of the enzyme; therefore, increasing the binding affinity by a single
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Figure 5. Comparison of the sequences (A) and structures of CBM1 from CBH I
(B) and CBH II (C). Tyrosine residues at the binding surface are shown in stick
representation and Cystine residues are shown in CPK representation (cyan –
Carbon, red – Oxygen, blue – Nitrogen, white – Hydrogen, yellow – Sulfur).

(see color insert)

mutation was not expected to enhance the entire enzyme’s ability to degrade the
cellulose. Another structural difference between the two CBMs is that CBM1 of
CBH I has two disulfide bonds (C8 – C25 and C19 – C35), whereas the CBM1
of CBH II has three disulfide bonds (C1 – C18, C8 – C25, and C19 – C35).
The structural differences between the CBM1 of CBH I and the CBM1 from the
homology model of CBH II are illustrated in Figures 5B and 5C. As a result of
the three disulfide linkages, the N-terminus and C-terminus of CBH II CBM1 are
closely packed together (i.e., they are connected by C18 and C19), suggesting this
structure is more rigid and undergoes fewer conformational fluctuations during
the dynamics.

During the first 200-ps simulation of the CBM1 from CBH II, tryptophan
W13 moved from its internal location (“closed” state) in the CBM and formed a
contact with the cellulose surface (“opened” state). Again, these results support the
hypotheses proposed by Nimlos and coworkers that an induced change of CBM1
near the cellulose surface plays a key role in cellulose recognition. Molecular
dynamics simulations of the CBM1 from CBH II showed an analogous translation
to CBH I in that this CBM moved away from the non-reducing end of the broken
cellulose chain. We studied the processivity of this CBM using the analogous
protocol mentioned above. In the initial conformation, the CBM was in front of
a broken chain with tryptophan W5 above the 15th glucan. A cellodextrin chain
was broken between the 16th and 17th glucan. The distal end of the CBM faced
the non-reducing end of the broken chain. As shown in Figure 4B, we observed
a similar processive motion of the CBM on the cellulose surface. The CBM
remained at its initial state for about 5 ns before moving to the next position. This
is about 10 Å away from the non-reducing end with W5 over the 13th glucan. The
CBM jumped one cellobiose unit along the chain towards the reducing end. After
staying at this new position for another 10 ns, it jumped again another 5 Å along
the chain.
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As with the CBM1 from CBH I, another simulation was conducted in which
CBM1 of CBH II was placed on the cellulose surface facing in the opposite
direction. In the initial conformation, the CBMwas in front of a broken chain with
tyrosine W13 above the fifth glucan. A cellodextrin chain was broken between the
fourth and fifth glucan. In this case, the distal end of the CBM faced the reducing
end of the broken chain. During the 25-ns simulation, no net forward movement
along the chain towards the non-reducing end was observed. This result supports
the hypothesis that CBH II recognizes the non-reducing end of a broken chain
and translates processively down that chain towards the reducing end.

Our previous studies of the potential energy landscape of the CBM1 from
CBH I interacting with the cellulose surface sheds light on the mechanism of
CBM1 translation when no longer near a broken cellulose chain (39). The
potential energy landscape of CBM1 on an unbroken cellulose surface shows a
uniform periodicity along the entire length of a cellulose slab, which suggests
the CBM1 should undergo random diffusion on the cellulose surface instead of
processive movement. However, breaking a coarse-grained chemical bond results
in a potential energy barrier over the hydrolyzed cellulose chain on the order of
10 kcal/mol, which drives the CBM1 away from the broken end (39).

Coarse-Grained Model of CBM1

The atomistic model of CBM1 acting on the cellulose consists of 7263
atoms using an implicit solvent model. In the previous simulations (Figure
4), the cellulose was represented by a coarse-grained model and the CBM was
represented by an atomistic model (1455 particles totally). To further reduce the
system size, we combined the coarse-grained cellulose model and a coarse-grained
CBM model (Go model) to investigate the interaction of CBM1 from CBH I with
cellulose. The entire system contains only 996 particles. To compare the speed
of these three models, a 100-ps molecular dynamics simulation was carried out
on a Linux cluster using eight processors. The atomistic models of cellulose and
CBM took 69.6 minutes, whereas the coarse-grained cellulose with atomistic
CBM model took 17.1 minutes, and the coarse-grained models of cellulose and
CBM took only 13.7 minutes. We should keep in mind that all these simulations
used an implicit solvent model; using an explicit solvent would take longer. The
advantage of using a coarse-grained model of the protein is not well demonstrated
in this case, because the CBM is a small peptide containing only 36 residues.
Thus, using a coarse-grained model of the CBM does not dramatically speed
up the calculation. However, the method described here should be extremely
useful and should significantly expedite the calculation when used to study the
interactions of cellobiohydrolases (usually over 500 residues) with cellulose.

As shown in Figure 6, a similar translation of CBM1 down the cellodextrin
chain was observed with the coarse-grained CBM model. The CBM remained at
its initial position for about 1 ns before it moved to the next position. This is about
10 Å away from the reducing end with Y13 over the seventh glucan. The CBM
jumped one cellobiose unit down the chain. After staying at this new position
for another 10 ns, it jumped again another 10 Å down the chain with Y13 over
the ninth glucan. These results suggest the coarse-grained models of CBM and
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Figure 6. Plots showing details of the processivity of CBM1 during molecular
dynamics simulation. The CBM1 of CBH I is shown as gray beads and four

tyrosine residues are shown as red beads. The gap between the two blue glucose
residues (the fourth and fifth glucose residues) indicates the position where a

chain was broken. (see color insert)

cellulose contain the essential elements for CBM recognition of cellulose as the
atomistic models of CBM and cellulose, indicating the coarse-grained model of
enzymes could be used to study the interaction between cellulose and cellulase
enzymes.

To investigate how CBM1 recognizes the reducing end of an already broken
cellulose chain, another simulation was conducted in which the CBM1 was
rotated by 180° along the surface and was facing the reducing end. In the initial
conformation, the CBM was placed in front of a broken chain with tyrosine Y13
above the eighth glucan and tyrosine Y31 above the fifth glucan. The proximal
end of the CBM faced the reducing direction of a cellodextrin chain, which
was broken between the fourth and fifth glucan. In this case, the broken site is
underneath the proximal end of the CBM whereas in the former simulation, the
broken site is underneath the distal end of the CBM.
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Figure 7. The CBM1 of CBH I performed a U-turn like movement on the cellulose
surface when initially facing the wrong way, i.e., with the proximal end of the
CBM facing the reducing end of a broken cellodextrin chain. (see color insert)

During the simulation, the CBM returned to the correct arrangement with the
distal end facing the reducing end again by performing a U-turn-like movement
on the cellulose surface. As shown in Figure 7, the CBM initially turned around
clockwise. It rotated by ~45° in 0.1 ns and by ~135° in 0.3 ns. However, it failed
to complete a 180° turn and began to rotate counter-clockwise in 0.4 ns. The
CBM passed its initial position on the cellulose surface in 1.8 ns, and continued to
rotate counter-clockwise. Finally, it successfully finished a U-turn on the cellulose
surface in 4.2 ns and positioned itself on the correct track, with the distal end
facing the reducing end of a cellodextrin chain and tyrosine residue Y13 over the
sixth glucan. These results shed light on the recognition mechanism of CBM to
crystalline cellulose, indicating that the initial arrangement of CBM upon binding
might not be very important, since CBM could possibly adjust its initial position
after binding to cellulose.

To investigate whether or not this U-turn-like movement could also happen
in the atomistic model of CBM, we conducted an analogous simulation using
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a coarse-grained cellulose model and an atomistic CBM model. In the initial
conformation, the atomistic CBM was superimposed on the coarse-grained CBM
mentioned above. During a 40-ns simulation, no translational or rotational
movement was observed. These simulation results indicated the coarse-grained
CBM potential energy surface is smoother than the atomistic CBM potential
energy surface and suggests that the coarse-grained CBM model can enhance the
conformational sampling and expedite the dynamics.

These simulation results indicate that the coarse-grained models of different
molecules with distinct resolutions could be combined together to expedite
molecular dynamics simulations of large biomolecular systems. However, caution
must be taken when using this method because, in general, the interactions
between two coarse-grained models with different resolutions might need to
be re-scaled to represent the real physical interactions in atomics models. For
instance, to mimic the strong stacking interaction between a sugar ring and
an aromatic ring, we found that the interaction between cellulose and the
coarse-grained CBM beads representing aromatic residues needed to be increased
by a factor of 4 compared with other coarse-grained CBM beads. A smaller
scaling factor could cause the CBM to dissociate from the cellulose surface (i.e.,
the binding affinity is too weak). On the other hand, a larger scaling factor (i.e., a
too-sticky surface) could make the CBM interact too strongly with the cellulose
surface after binding and not be able to slide. To make this method useful, a
detailed balance of the interaction between two coarse-grained models with
distinct resolutions needs to be satisfied based on trial and error.

Conclusions

A coarse-grained model has been developed for the (1,0,0) surface of
crystalline cellulose Iβ from all-atom simulations. The model decreases the
number of particles by a factor of 8 and allows reliable molecular dynamics
simulations to be conducted over long time scales. We are the first to show,
using computer simulations, that when T. reesei CBM1 is applied to this
new coarse-grained cellulose surface, the CBM can translate along a broken
chain of cellulose without applying an artificial biasing potential. Our results
demonstrate that the CBM1 of CBH I recognizes the reducing end of cellulose
and migrates along the cellulose chain towards the non-reducing end, whereas
the CBM1 of CBH II recognizes the non-reducing end of cellulose and migrates
along the cellulose chain towards the reducing end. These observations agree
with the proposed biological functions of CBH I and CBH II. We believe the
coarse-grained model of cellulose presented provides a very useful tool for
studying the mechanisms of other families of CBMs binding to cellulose surfaces,
as well as the dynamics and functionality of the entire CBH I enzyme acting on
cellulose.
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Chapter 6

Energy Storage in Cellulase Linker Peptides?

Clare McCabe,1,* Xiongce Zhao,2 William S. Adney,3
and Michael E. Himmel3

1Department of Chemical and Biomolecular Engineering and Department of
Chemistry, Vanderbilt University, Nashville, TN 37235

2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory,
Oak Ridge, TN 37831

3Chemical and Biosciences Center, National Renewable Energy Laboratory,
Golden, CO 37831, USA

*c.mccabe@vanderbilt.edu

In this chapter, we discuss the use of molecular dynamics
simulations and free-energy calculations to investigate the
possible role the linker polypeptide, common to many
cellulase enzymes, plays in the enzymatic hydrolysis of
cellulose. In particular, we focus on the linker polypeptide
from cellobiohydrolase I (CBH I) from Trichoderma reesei,
which is one of the most active cellulase enzymes. CBH I is
a multi-domain enzyme, consisting of a large catalytic domain
containing an active site tunnel and a small cellulose binding
module, which are joined together by a 27-amino-acid residue
linker peptide. CBH I is believed to hydrolyze cellulose in a
“processive” manner; however, the exact mechanism of the
depolymerization of cellulose by CBH I is not fully understood.
It has been hypothesized that the flexible interdomain linker
mediates a caterpillar-like motion that enables the enzyme
to move along the cellodextrin strand. Although the linker
polypeptide sequence is known, the spatial conformation
adopted by the linker domain and its role in the hydrolysis
process, if any, has yet to be determined. The simulation
results obtained to date indicate that the CBH I linker’s free
energy is critically dependent on the existence of the cellulose
substrate and the stretching/compression pathway adopted. In
the presence of a cellulose surface, simulations suggest that

© 2010 American Chemical Society
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the linker exhibits two stable states, which would support
the hypothesis that the linker peptide has the capacity to
store energy in a manner similar to a spring and facilitate a
caterpillar-like motion.

Introduction

Understanding the mechanism of cellulase enzymes acting on cellulose at the
molecular level helps us optimize the hydrolysis process, by allowing us to design
more effective versions of nature’s nanomachines and by providing insight into
nature’s design of nanoscale devices. The absence of a clear mechanism of action
and understanding of the kinetic and thermodynamic factors important during
the decrystallization and depolymerization events that release glucose molecules
is a major drawback to the systematic development of improved cellulases (1).
While atomistic molecular simulations of the complete hydrolysis process are
beyond currently available computational capabilities, molecular modeling can
be used to provide fundamental molecular-level insight by probing individual
parts of the enzymes or the hydrolysis, or both (2, 3). As described elsewhere in
this volume, several computational approaches are being taken to help elucidate
the mechanism of action of cellulase enzymes on cellulose that complement the
ongoing experimental work; here we focus on understanding the role, if any,
of the linker polypeptide commonly associated with cellulose enzymes. For
completeness, we first outline the main features of cellulase enzymes, focusing
on processive cellulases and CBH I from Trichoderma reesei (T. reesei). We also
discuss one possible mode of operation before describing efforts to use molecular
dynamics modeling to probe the proposed behavior.

Cellulase Systems

The enzymatic hydrolysis of cellulose into its monomer units of glucose
occurs in nature through the action of complementary cellulase enzymes.
Cellulases are divided into endoglucanases, which cleave glycosidic bonds
mid-chain to leave accessible ends; exoglucanases, which bind to the free
reduced or non-reduced chain ends and liberate cellobiose and glucose;
and β-D-glucosidases, which cleave the cellobiose units into fermentable
glucose residues. Whereas endoglucanases randomly cleave glycosidic bonds,
exoglucanases act in a processive manner to move along a cellulose chain and
liberate cellobiose residues.

The filamentous fungus Trichoderma reesei has been extensively studied
and is the microorganism most commonly used to study the cellulase system
(4). The cellulytic system secreted by T. reesei contains two exoglucanases or
cellobiohydrolases (CBH I and CBH II), at least five endoglucanases (EG1, EG2,
EG3, EG4 and EG5), and several β-glucosidases (5–7). Of these, CBH I is the
most studied and one of the most active cellulases known (8, 9).
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Cellobiohydrolase I

Like many of the enzymes secreted by microorganisms, CBH I is a
multi-domain enzyme (10) consisting of a large catalytic domain containing
an active site tunnel and a small cellulose binding domain (CBD) (Figure 1).
With few exceptions, the CBD is connected to the catalytic module by a highly
glycosylated (in fungi) flexible linker (11). While the binding domain serves
to bring the catalytic domain into contact with the substrate (12–14), how
the binding module and catalytic domain work together to hydrolyze a single
cellodextrin strand from the crystalline cellulose surface is largely unknown (5).
Furthermore, while much is known about the structure and composition of the
binding module and catalytic domain, a complete CBH I structure has not yet
been solved experimentally.

Although the sequence of the linker polypeptide has been determined, the
linker’s structure and its role during hydrolysis remain unclear. In cellulases,
linker peptides vary in length from several to ~100 amino acids and, although
linker sequences from different enzymes rarely share much sequence homology,
they are generally rich in threonine, serine, proline, and glycine residues (15–17).
Such small (glycine) and polar (threonine, serine) residues impart flexibility, yet
maintain stability and conformation in solution through hydrogen bonding, and
are generally common in linker domains (18).

As shown in Figure 2, the CBH I linker consists of 27 amino acid residues
and is heavily glycosylated at the threonines and serines (19). Although a
complete CBH I structure has not yet been solved, small angle X-ray scattering
(SAXS) studies on related multi-domain cellulases have provided some insight.
In particular, SAXS on cellulases from Cellulomonas fimi and Humicola jecorina,
in which the catalytic and cellulose binding domains are connected by relatively
extended proline-rich and serine/threonine-rich linkers, suggest that an elongated
tadpole structure is adopted (20–23). However, subsequent additional SAXS
analysis on Humicola insolens and Pseudoalteromonas haloplanktis cellulases
showed that a distribution of interdomain separations is more likely exhibited,
which can be attributed to the flexibility of the linker polypeptide (24–26).

The Role of the Linker Polypeptide?

The linker polypeptide in CBH I is thought to play several roles, including
maintaining the spatial orientations of the binding module and catalytic domain,
protecting the domains from proteolysis, and enabling secretion of other enzymes
from T. reesei (9, 17, 18). Additional mutational biochemistry experiments have
shown that shortening or removing the linker can result in loss or reduction in
activity of CBH1 on crystalline cellulose (16, 20, 27, 28). We therefore assume
that the linker domain plays a significant role in enzyme function; however, the
physical properties of the linker structure, its role in hydrolysis, and its relation to
the catalytic and binding domains is largely unknown.

Given the variable nature of linker peptides, it has been suggested that
their role is to provide an extended, flexible hinge between the catalytic and
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Figure 1. Artist’s rendition of CBH I. The cellulose binding domain (CBD)
interacts with the cellulose surface to detach cellulose molecules, which are then
shepherded to the catalytic domain to undergo hydrolysis. (see color insert)

Figure 2. Molecular model of the CBH I linker peptide (top) and amino acid
sequence (bottom) showing extent of glycosylation (M) at theronine (T) and
serine (S) residues. The remaining residues are labeled according to the one

letter amino acid shorthand scheme. (see color insert)
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binding domains to facilitate the independent function of these domains and
allow the cellulose binding domain to adsorb onto the cellulose surface and,
subsequently, diffuse laterally along the surface leading the catalytic domain
to new, enzymatically accessible sites (16). More recently, it has also been
hypothesized that cellulases act through a caterpillar-like motion mediated by
a combination of the flexible interdomain linker and diffusion of the binding
domain on the cellulose surface (24, 25, 29). For the linker to work in such a
caterpillar or “spring-like” motion, the linker polypeptide must be capable of
storing energy. Once a short enough end-to-end distance is reached, this energy
is released and allows the linker to extend. In light of the above hypothesis, it is
critical to understand the mechanism of the linker peptide motion in the context
of the cellulose surface to provide insight into the functioning mechanism of
CBH I (9). Given that there are no experimental methods available to probe this
complex behavior at the molecular level, molecular dynamics simulations have
been used to study this system. Here, we provide an overview of the simulations
performed to date.

Free Energy Calculations

Complex macro- and biomolecular systems that undergo conformational
and/or structural change in response to their environment or as part of their function
lie at the heart of many natural and synthetic processes. The conformational states
in which macro and bio-molecular systems exist correspond to minima in free
energy of the systems. Free energy is a measure of the energy of the system that
takes into account entropic and thermal effects, and so differs from the internal
energy (U), which is equal to the sum of the potential and kinetic energies that the
atoms in a system possess by virtue of their positions and velocities, respectively.
E.g., the Helmholtz free energy A is equal to U − TS where T is temperature and
S is entropy. In a system at constant temperature and density, A is minimized.
Minimizing A results in a trade-off between lowering U (often achieved by
having the atoms or molecules arranged in a regular structure, such as a crystal)
and increasing S (achieved by increasing disorder, which generally increases U).
Calculating potential and kinetic energies (and hence U) is trivial in a molecular
dynamics (MD) simulation in which the positions and velocities of atoms are
computed as a function of time. Free energies remain a challenge since they
require higher-order information (i.e., they require entropic information about the
states of the system and the probability of their occurrence) (30, 31).

Many biological molecules undergo conformation changes as part of their
function. Such conformation changes could be between two or more similar
low-free-energy conformations or may represent switching from one minimum
free-energy conformation to another, reflecting a shift in the minimum caused
by changed local conditions. Understanding the relative free energies of various
conformations of biological molecules, including those of the CBH I linker
polypeptide, is key to understanding their structure and function. For example, the
conformation into which a protein folds corresponds to the minimum free-energy
conformation, thus determining its function (32). Developing computational
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methods for predicting low-free-energy conformations based on molecular
composition remains an outstanding and challenging problem (33).

Calculating the free energy is equivalent to statistically measuring the
probability of finding a system in a given state. Therefore, it depends on the
extent of the phase space accessible to the molecular system, and it is not
possible to calculate the absolute free energy of a system, because the entire
phase space must be sampled. We can, however, conveniently calculate the free
energy difference between two related states, which corresponds to estimating the
relative probability of finding a system in one state to another. A good estimate
of the free energy can be obtained by sampling the system along the pathway
of interest. However, such sampling is usually not feasible using equilibrium
molecular dynamics because high energy states are scarcely sampled and hard to
overcome if two states are separated by an energy barrier. To efficiently sample all
of the phase space of interest, we must use non-equilibrium molecular dynamics
to facilitate the sampling. That is, an external constraint force is applied to the
system to effectively flatten the energy surface so that simulations can easily
access the states of interest with sufficient sampling.

To date, commonly used approaches to free-energy calculations for systems
involving extensive numbers of solvent molecules include Ciccotti’s constraint
dynamics and the umbrella sampling methods. Both methods have been used
to study the free energy of cellulase linker peptides as a function of end-to-end
distance. We briefly review these methods below and provide some details about
implementing these approaches for application to the current problem.

Ciccotti’s Method

In Ciccotti’s method (34), the free energy is calculated as the potential of
mean force along a chosen coordinate using constraint dynamics. An external
constraint is applied to the system to guarantee the sampling of phase space regions
that would otherwise be highly improbable to reach in a conventional equilibrium
molecular dynamics simulation. In this approach to studying the free energy of
the CBH I linker polypeptide, the distance between the particles of interest, r,
which corresponds to the distance between theN-terminus (N on glycine 1) and the
C-terminus (the C on proline 27) on the linker backbone, is fixed by a holonomic
constraint. The average force exerted on the fixed particles by the environment,
which is the negative of the average force required to maintain the constraint (a
quantity measured during the simulation), is then computed as a function of the
distance between them.

In simulations of the linker polypeptide with a cellulose surface in aqueous
solvent, the potential mean force calculation incorporates solvent effects, the
intrinsic interaction between the atoms in the linker, and the interaction with the
substrate. The potential of mean force at a linker end–to-end separation distance,
r, corresponds to the free energy needed to stretch or compress the two termini
from a distance r0, where the potential of mean force reaches it minimum value,
to the distance r. During each run at a fixed r, the force on the C (FC) and N
(FN) terminus are calculated as time averages so that the mean force between the
termini is given by
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where is the unit vector along the direction of the C − N, and indicates a
time average over the phase-space trajectory. Integrating the C − N mean force,
f(r) = −dF(r)/dr, gives the desired potential of mean force F(r),

Umbrella Sampling

Umbrella sampling (35) attempts to overcome the problem of sampling
improbable phase space regions by modifying the potential functions so the
unfavorable states are sampled sufficiently. To achieve this, a harmonic biasing
potential is imposed on the linker to sample the end-to-end distance rt of the
linker,

where k is a force constant. In contrast to Ciccotti’s method, umbrella sampling
collects only the density of states of r along the reaction coordinate rather than the
forces. The data from umbrella sampling are then processed using the weighted
histogram analysis method (WHAM) (36) to calculate the free energy as a function
of the end-to-end length of the linker.

The umbrella sampling method is computationally more efficient than
Ciccotti’s method, because we can readily examine the sufficiency of sampling
by checking the overlap of histograms collected during the simulations. The
sampling efficiency is based on the balance between the value of k, Δr, and
simulation time. A small k value allows the sampling to span over a wide range of
r, which requires fewer sampling windows, but each run needs a long simulation
time to obtain good histogram statistics. A large k helps each sampling run to
focus within a small range of r and results in histograms with better statistics
in a short simulation time; however, more sampling windows are required to
cover the entire phase space of interest. Sampling with small Δr and short runs
is computationally more advantageous than longer runs with larger Δr (37).
Therefore, we typically perform a series of test runs to optimize the value of Δr
and the time scale of each equilibration and production run.

In the results discussed here, values of k ranged from 2.0 to 7.6 kcal/mol/A2,
which were estimated to be on the order of kBT/(Δr)2, where kB is Boltzmann’s
constant and Δr is the sampling window interval. The histograms collected during
typical samplings were analyzed for sufficient overlap and statistical smoothness.
A Δr value of 0.5 Å was found to be necessary to obtain sufficient overlap between
sampling windows for the given k values. Furthermore, after a series of trial
simulations, we found that a production run of 1 ns was sufficient for obtaining
histograms and free energy with satisfactory statistics for the system of interest.
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Figure 3. Snapshot showing an example initial configuration from a molecular
dynamics simulation of the CBH 1 linker polypeptide above a cellulose surface in

water. Top side view, bottom top down view. (see color insert)

Simulation Details

As discussed previously (and shown in Figure 2), the CBH I linker peptide
from T. reesei consists of 27 amino acids with one to four mannose sugars
glycosylated to the serine and threonine residues along the peptide backbone.
The amino acids in the CBH I linker were modeled with the CHARMM27 force
field (38), and the mannose sugar residues and cellulose were modeled by the
supplemental force fields in CHARMM27, developed by Kuttel and coworkers
(39). Water molecules were described by the TIP3P potential (40). For full details
of the force fields used, the reader is directed to the original publications. The
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NAMD (46) simulation package was employed in all simulations, and the VMD
(47) tool used for visualization, snapshot extraction, and trajectory analysis.

The cellulose is modeled as a surface of the Iβ cellulose microfibril,
constructed from the structure proposed by Nishiyama and coworkers (41). The
microfibril used in the simulations reported here contains four layers of glucose
sheets, with each sheet containing six glucose chains and each chain having 18
glucose units. This model gives a substrate with dimensions of approximately 9.4
nm x 4.5 nm x 1.2 nm.

The Lennard-Jones (LJ) interactions between different species were
calculated using Lorentz-Bertholet combing rules, with a cutoff of 1.0 nm. An
atom-based pair list with a cutoff of 1.2 nm was used and updated during the
simulations. The particle-mesh Ewald summation method (42) with a fourth-order
interpolation and direct space summation tolerance of 10−5 was applied to
evaluate the electrostatic interactions. Periodic boundary conditions were applied
in all three directions. The temperatures and pressures were kept constant where
necessary using the method of Berendsen and coworkers (43). The SHAKE (44)
algorithm was applied to constrain the bonds involving hydrogen atoms. An
integration time step of 2 fs was used in all the runs.

In all simulations, the system was first equilibrated in the isobaric (1 bar)
isothermal (300K) (NPT) ensemble before any production runs were performed.
A typicalNPT run included 10,000 steps of energy minimization using a conjugate
gradient algorithm, followed by heating from 100 K to 300 K in 25-K increments
within 10 ps. Subsequently, 150 ps of simulation with the cellulose substrate
fixed (where needed) and 40 ps with all the atoms unconstrained were performed
to further equilibrate the solvent and solute until the water density in the box
approached a constant and stabilized value of ~1g/cm3.

Free-energy sampling was performed under isothermal (300K) and constant
volume (NVT) ensembles, starting from the ending configurations collected in the
NPT simulations (Figure 3). In the free-energy simulations, the cellulose substrate
was kept frozen. This assumes that the amplitude of the vibrational oscillations of
the atoms in the substrate is much smaller than the typical dimension of the system
at the considered temperature.

In the free-energy calculations using Ciccotti’s method, the value of r0 was
chosen as the equilibrium length of the CBH I linker, r0 = 4.95 nm, when the
external force is absent and corresponds to the length at which f(r) minimizes.
Calculations of the mean force were performed at r ranging from 8.9 nm to 0.9 nm,
with state points selected every 0.5 nm. Therefore, 160 conformational windows
are involved in one full potential of mean force calculation, with each simulation
covering 200 ps of phase-space trajectory. In total, we performed 10 potential
of mean force calculations to obtain good statistics by averaging more than 10
potential of mean force curves.

With the umbrella sampling method, simulations have been performed for rt
in the range of 3Å to 80 Å. In each run, the system was equilibrated for 100
ps, followed by a 1-ns production run, during which time the histograms of r
were collected at every step. The WHAM code developed by Grossfield (45)
was used to analyze the histogram data and determine the free energy. We found
that the convergence of the free energy calculated from the umbrella sampling
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Figure 4. Schematic of the three pathways adopted in the study of the relative
free energy profile of the CBH1 linker above a celluose surface. The dotted lines
in each figure indicate the direction of linker motion and the solid blue circles the

ends of the linker being held fixed. (see color insert)

data is sensitive to the convergence tolerance and the bin width used in WHAM
processing. In this study, an optimized bin width and convergence tolerance of 0.2
Å and 10−5, respectively, were used.

Results and Discussions
To probe the hypothesis that the CBH I linker acts as a spring and has the

potential to store energy, simulations of the linker polypeptide were performed
both with and without the cellulose surface. One important, but expected,
phenomenon observed from our simulations is that the linker’s free-energy
profile is critically dependent on the folding pathway, or reaction coordinate, that
the linker follows during the compression/stretching process. In the following
paragraphs, we will discuss results from simulations in which three different
pathways, shown in Figure 4, were studied.

As the first example, in Figure 5 we present the relative free-energy profile for
the CBH I linker above a cellulose surface calculated along the first pathway shown
in Figure 4 using the Ciccotti method (48). In this example, the linker is lying
flat on the substrate, while its two ends are stretched or compressed by applying
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Figure 5. The potential of mean force and as a function of the linker end-end
distance. Adapted from Zhao et al. Chemical Physics Letters, 460 (2008)

284–288.

constraint forces in opposite directions along the surface plane. One significant
feature shown in the figure is that the free energy has two minimum state points
located at r1 = 2.5 nm and r2 = 5.5 nm, respectively. That is, the linker is most
stable at these two lengths. The free energy difference between these two linker
modes, i.e., the linker at the compressed state (r1 = 2.5 nm) and the extended state
(r2 = 5.5 nm), is about 10.5 kcal/mol, with the extended state being energetically
more favorable. A local maximum is seen in the free-energy profile between these
two states at r3 = 3.7 nm, which corresponds to the energy barrier the linker must
overcome as it transitions between r1 and r2. The energy difference between r1
and r3 is 17.5 kcal/mol, and the difference between r2 and r3 28.0 kcal/mol. When
the linker is stretched or compressed to the two extreme conditions (i.e., whether
it is compressed below 1.3 nm or extended above 7 nm), the free energy goes up
dramatically.

For the first system shown in Figure 4, we also monitored the C − N
length distribution function, P(r), for the linker to study the linker conformation
transition between the two stable states. Figure 6 shows a schematic plot of the
distribution obtained by releasing the constraints on the linker at an end-to-end
separation distance of 8.9 nm and monitoring the end-to-end distribution. Two
main peaks exhibited in the P(r) profile indicate that the linker is predominantly
distributed at the two minimum energy states. The relatively small peak
corresponds to the state with free-energy minimum at r1, and the large peak
corresponds to the free-energy minimum at r2. This indicates that the linker has
the potential to switch between these two states, and that the more extended state
is the preferred conformation. We note, however, that the distribution function
was calculated from a relatively short simulation (20 ns) in which the linker in
its initial configuration has significant stored potential energy, and that 20 ns is
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Figure 6. Schematic distribution of linker end - end distance. Adapted from Zhao
et al. Chemical Physics Letters, 460 (2008) 284–288.

not long enough to obtain truly equilibrated configurations. Therefore, while the
final distribution obtained is indicative of the overall distribution (i.e., shows
the qualitative trends), it should not be interpreted as a reversible unconstrained
sampling of the linker’s energy surface from which we can infer quantitative
free-energy information.

To verify the results obtained for the CBH I linker along folding pathway
one, we also performed calculations using umbrella sampling. These results
indicate that both methods give consistent free-energy profiles within statistical
fluctuations; however, the approach using umbrella sampling plus WHAM
provides better error statistics than the Ciccotti method. One possible reason
could be that the WHAM technique used in umbrella sampling tends to give
better statistical uncertainties in deriving the free-energy profiles than the simple
integration of mean forces used in Ciccotti’s constrained-dynamics method.

Another advantage of using umbrella sampling and WHAM is their practical
computational efficiency. Using umbrella sampling allows us to conveniently
check the sampling sufficiency by examining the overlapping extent of the
umbrella histograms obtained during simulations. Once sufficient overlaps are
obtained, we can stop further sampling and start simulating the next adjacent
window. Therefore, we carried out most of our simulation studies on the CBH I
linker polypeptide with the umbrella sampling method plus the WHAM technique
to post-process the data collected and used Ciccotti’s method for verification and
comparison purposes only.

To further probe the behavior of the CBH I system, we also performed
simulations using umbrella sampling to calculate the free energy of the linker
following the same folding scheme, but without the existence of the cellulose
substrate (i.e., a ‘free’ linker was studied) (49). Interestingly, in these simulations,
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we found that both minima observed in Figure 5 disappear; and the free-energy
profile is essentially monotonic, with the free energy going up dramatically when
the linker is stretched beyond 7 nm and compressed until the two ends are almost
in contact. This result suggests that the substrate plays at least a partial role in
determining the free energy of the linker. However, from preliminary analysis
of the simulation results for the linker plus substrate system, it is not clear what
the dominant force is behind the features observed in the free-energy profile.
Additional analysis of the interactions between the linker and the substrate and
changes in the solvent structure during the transition will be indispensable in
understanding the observed free-energy features on the molecular level.

To further probe the role of the surface and effect of the folding pathway, we
are also performing simulations to explore the free-energy profiles of the linker
along the other pathways shown in Figure 4. In an effort to reduce the number of
degrees of freedom in the system and more faithfully mimic the presence of the
catalytic and binding domains, we assume that the binding domain of the enzyme
is adsorbed to the cellulose surface and fixed. We also assume that the end of
linker attached to the binding domain is constrained and not moving while the
other end of the linker, (glycine 1) connected to the catalytic domain, moves in the
direction indicated by the dashed line in the figure, which corresponds to the vector
from the connecting point of the linker to the catalytic domain to the connecting
point of the binding domain. Preliminary results from these calculations suggest
that the linker-substrate interaction accounts, at least partially, for the distinct
features observed in the free-energy profile of the linker on a cellulose surface.
In particular, the free energy depends on the ability of the mannose residues on
the linker backbone to interact with the cellulose surface. These results will be
reported in detail in a future publication.

Conclusions

The minima observed in the free-energy profile along pathway one and the
linker length distribution profile suggest that the CBH I linker polypeptide has the
potential to store energy during compression/stretching and to transition between
the extended and compressed states. However, we stress that it is not clear from
these simulations alone whether such a mechanism is the key to understanding
the normal operation of the CBH I enzyme acting on cellulose. Additional
simulations are clearly needed to further probe the role of the cellulose surface,
solvent, and extent of glycosylation and their effects on the observed free-energy
profiles. Simulations of mutated CBH I linkers in which key residues, such as
the central arginine groups around which the linker appears to hinge, also need to
be performed. Furthermore, simulations of linker peptides from other enzymes
could provide additional insight by enabling us to study the effect of linker length
on the observed behavior. Again, the simulations reported here are focused on the
linker itself; therefore, the impact of the CBH I catalytic and binding domains on
the linker behavior is not included (50). Ideally, it would be desirable to calculate
the free energy of the linker under the influence of these domains and other factors
important to the hydrolysis process; however, it will be computationally very
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challenging to study such a large system. One possible choice is to perform such
simulations using implicit solvent models or coarse-grained techniques if reliable
models and force fields can be developed. Additionally, kinetic, rather than
molecular modeling, approaches can be considered as in the recent study of Ting
and coworkers (51), who developed a mechanochemical model for the dynamics
of a CBH I-like cellulase as it extracts and hydrolyzes a cellulose polymer from
a crystalline substrate. This work provides further support for the notion that
the linker length and stiffness play a critical role in the cooperative action of the
catalytic- and cellulose-binding domains.
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Chapter 7

QM/MM Analysis of Cellulase Active Sites and
Actions of the Enzymes on Substrates
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Biodegradation of cellulosic biomass requires the actions
of three types of secreted enzymes; endoglucanase (EC
3.2.1.4), cellobiohydrolase or exoglucanase (EC 3.2.1.91), and
β-glucosidase (EC 4.2.1.21). These enzymes act synergistically
to hydrolyse the β-1,4 bonds of cellulose and converts it
into simple sugar. Hydrolysis of the glycosidic bond can
occur either by net retention or by inversion of anomeric
configuration at the anomeric center. QM/MM simulations are
useful tools to study the energetics of the reactions and analyze
the active-site structures at different states of the catalysis,
including the formation of unstable transition states. Here, a
brief description of previous work on glycoside hydrolases is
first given. The results of the QM/MM potential energy and
free energy simulations corresponding to glycosylation and
deglycosylation processes are then provided for two retaining
endoglucanases, Cel12A and Cel5A. The active-site structural
features are analyzed based on the QM/MM results. The role
of different residues and hydrogen bonding interactions during
the catalysis and the importance of the sugar ring distortion are
discussed for these two enzymes.

© 2010 American Chemical Society
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1. Introduction

The worldwide concern about limited storage of fossil fuel has led to the
search for alternative energy sources. Biofuel generated from cellulosic biomass
can be a promising substitute (1). Cellulose [Figure 1], the main component
of plant cell walls, is a linear chain of sugar units connected by β-1,4 bonds.
However, cellulose forms highly crystalline microfibrils in the plant cell wall that
makes it recalcitrant to chemical and biological hydrolysis. Some microorganisms
produce a battery of enzymes that work synergistically to degrade crystalline
cellulose (2–4). Certain glycoside hydrolases (GH), such as cellulases, can play
an important role in the conversion of cell wall polysaccharides into fermentable
sugars through glycosidic bond cleavage (5–7). Non-catalytic carbohydrate
binding modules (CBMs) of the enzymes attach to the polymeric surface and
influence the actions of the catalytic domains (8–11). The enzymatic activity of
cellulases in cellulose binding and hydrolysis depends on a variety of factors,
including substrate composition, crystallinity, and recalcitrance (12, 13).

Three types of cellulases are known to play an important role in the
deconstruction of crystalline cellulose. Endoglucanases can cleave the
glycosidic bonds of cellulose by producing chain ends and break down the
interchain hydrogen bond in crystalline cellulose as well (14). Exoglucanases
or cellobiohydrolases can then attach to a single fiber and break it into smaller
sugars (cellobiose, cellotetraose, etc.). The simple sugars generated by these
enzymes may be further hydrolysed to glucose by β-glucosidases. Molecular
machines such as T. ressei cellobiohydrolases Cel6A, and Cel7A can act on
crystalline cellulose. These enzymes may adopt two significantly different
conformational states around the active site and couple the required energy for
crystalline disruption to the energy released by the hydrolysis of the glycosidic
bond. Activities of different cellulases are listed in Table 1. Henrissat et al.
have classified the catalytic domains of these glycosyl hydrolases into over 100
families based on amino acid sequence comparison and hydrophobic cluster
analysis (15–17) [this classification is available at http://www.cazy.org, the CAZy
(Carbohydrate-Active enZymes) website].

Figure 1. Cellulose, a linear polysaccharide chain with cellobiose as repeating
unit. The numbering on the sugar ring shows positions of ring carbon atoms

2. Reaction Mechanism

According to the stereo chemical outcome of the hydrolysis reaction, the
cellulases can be classified into two families; inverting and retaining enzymes
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Table 1. Enzymes known to facilitate the hydrolysis of cellulose (18)

Cellulase Description

Endoglucanase Random cleavage of β-1,4 linkages of cellulose with
preference for soluble and amorphous forms of the substrate.
Affinity decreases with decreasing degree of polymerization
with no activity on cellobiose.

Cellobiohydrolase Release of cellobiose from the nonreducing ends with
preference for crystalline forms of the substrate

β-Glucosidase Release of β-D-glucose from the nonreducing ends of a
wide variety of cellulose, cello-oligosaccharides, and a wide
variety of β-1,4-glucosidases

Glucan β-1,4-
glucosidase

Release of β-D-glucose from 1,4-β-D-glucans, but not
cellobiose

(19). The inverting enzymes use a single displacement mechanism [Figure 2]
resulting in inversion of the anomeric configuration. Two carboxylic/carboxylate
residues at the active site play the key role in the catalytic mechanism: one acts
as the general acid to cleave the glycosidic bond, and the other plays the role of
the general base during the nucleophilic attack by the water molecule. Generally,
these residues are Asp or Glu. On the other hand, the retention of stereochemistry
at the anomeric center involves a two-step catalytic mechanism. The departure of
the leaving group is first assisted by one catalytic residue with the second residue
stabilizing the intermediate. The attack of a water molecule at the anomeric
center then breaks the intermediate, leading to the formation of the product. The
reactions in both mechanisms are believed to proceed through highly dissociative
transition state structures with increasing charge formation at the anomeric center
and the formation of a partial double bond between the C1 and O5 atoms leading
to the oxocarbenium ion-like structure. Experimentally, the kinetic isotope effects
(KIE) had been used to predict the geometry of these unstable transition states
and intermediates (20–23). In comparison, computer simulations have been
performed to provide the structures with detailed atomistic descriptions of the
enzymatic reaction (24, 25).

3. Structural Features of Cellulase Active Sites
The three types of active sites found in glycosyl hydrolases are i) pocket or

crater, ii) cleft or groove, and iii) tunnel (26). The geometry of the active site
depends on the endo or exo specificiity of the enzyme. Substrates bind to the open
cleft in endoglucanases and xylanases which facilitates the twisting of cellulose
strands along the chain to support the endo mode of action. For an example,
the crystal structure of family 12 endoglucanase Cel12A (27) shows a concave
cellulose binding cleft formed by 9 β-strands. On the other hand, the active sites of
cellobiohydrolases or exoglucanases form a perfectly enclosed substrate-binding
tunnel to cleave the cellulose chain from non-reducing end. The +n to n subsite
nomenclature has been used for sugar-binding subsites in glycosyl hydrolases in
which subsites are labelled from +n to n, with +n at the non-reducing end and
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‑n the reducing end (28). The X-ray crystal structure of cellobiohydrolase, CelS,
a family 48 enzyme, showed that a ligand molecule binds to the tunnel between
-7 to -2 subsites and the product (cellobiose) in the cleft region between +1 and
+2. In CelS, the tunnel is intrinsically stable even without a bound substrate
whereas the product binding in the cleft region is crucial to stabilize the protein
conformation. A similar feature has also been observed in C. Cellulolyticum,
CelF (29), supporting the suggestion that significant conformational change in the
protein takes place upon the release of the product from the open cleft.

The catalytic domain of CelS folds into an (α/α)6 barrel and forms a substrate
binding tunnel at the N-terminal side of the inner α-helices [Figure 3] (30).
This folding pattern is common among inverting glycosidases such as family
8 cellobiohydrolases and family 15 glucoamylases (31). It has been observed
in Cel6A, another inverting enzyme, that the binding of four glucosyl units
within the tunnel corresponding to the -2 to +2 sites provides the transition
state stabilization (32–34). The intrinsically stable substrate binding tunnel and
protein-carbohydrate interactions in the active site of cellobiohydrolase permits
these enzymes to release the product while the remaining polysaccharide chain
slides through the tunnel for the further hydrolysis. All family 48 enzymes are
known to liberate cellobiose moieties by this processive mechanism when the
enzyme is active and the substrate is available. A cartoon of this iterative method
is shown in Figure 4.

Analyses of the active site interactions based on the crystal structure of the
family 48 CelF enzyme in complex with ligands indicate that Glu55 can be the
possible proton donor while Asp230 or Glu44 functions as the general base (29).
In CelS, the equivalent residues could be Glu87 (as the general acid catalyst)
and Asp255 or Glu76 (as the general base catalyst), respectively (30). Alzari
and coworkers (30) suggested that Glu87 acts as proton donor in CelS due to
its proximity to the active site and the favourable hydrogen bonding interaction
with O4 atom of sugar unit at the +1 site. Instead, Glu76 is positioned far away
from the active site and makes strong hydrogen-bonded interactions with sugar
and other basic residues. Therefore, Glu76 might not participate in the reaction
as a base catalyst. The sugar unit at subsite -1 was modeled to compare the role
of different residues in the active site of a family 8 CelA enzyme (30). On the
basis of their observation, Alzari et al. (30) proposed that Asp255 would possibly
stabilize the ring boat conformation at -1 site rather than being a base catalyst. It
was proposed that Tyr351 could participate in the reaction mechanism, although a
‘direct catalytic role’ might not be possible due to its high pKa value (30).

Another important reactant involved in the reaction is the nucleophilic water
molecule in the case of inverting enzymes [Figure 2]. This water molecule
may play a role in stabilizing the oxocarbenium type intermediate of the central
sugar ring at -1 subsite after glycosidic bond cleavage, in addition to acting as
the nucleophile. It makes a hydrogen bond with the base catalyst and donates
hydroxyl ion to the anomeric carbon atom at site -1. One difficulty in experimental
investigations is to predict the position of this water molecule. A recent study on
family 44 endoglucanase, Cel44A, has identified the water molecule that may take
part in hydrolysis based on the 3D-RISM theory (35, 36). Interestingly, the atomic
resolution crystal structure of CelA in complex with a single continuous cellulose
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chain pointed out the presence of this nucleopholic water molecule in the electron
density map, even though it was difficult to identify this water molecule in the
available CelS crystal structure (30). A reverse reaction mechanism (i.e. starting
from the product state) can possibly predict the position of this water molecule
in the reactant state (37), although the reaction path might not be the same as the
forward reaction. The normal hydrolysis process then follows from this state. The
T. reesei cellobiohydrolase Cel6A is found to hydrolyze α-cellobiosyl fluoride by
this mechanism (38–40).

Figure 2. Schematic representations of two main enzymatic reaction mechanisms
of glycosidic bond hydrolysis. (A) Inverting mechanism, (B) Retaining mechanism
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Figure 3. 3-dimensional structure of CelS (PDB ID: 1L2A) (30).

4. Sugar Ring Distortion
All accessible conformers of a sugar ring due to ring-distortion can be

schematically represented by Stoddart’s diagram [Figure 5].
Upon binding to the enzyme, the sugar ring at subsite -1 is believed to undergo

conformational changes (41, 42) from undistorted 4C1 chair structure to distorted
skew-boat structure [Figure 6], presumably, due in part to: (a) an increase in the
charge at the anomeric carbon atom (C1), (b) an increase in the distance between
C1 and O4 atoms of the leaving group, and (c) a decrease in the intra-ring O5-C1
distance. The substrate interacts with the protein mainly via hydrogen bonding and
stacking interactions involving the aromatic side chains (29), and these interactions
produce a continuous torsional strain on the substrate. Conformational changes,
mainly at subsite -1, have been observed at all subsites due to these interactions
(43). In contrast, very little structural modification was observed for the protein
side chains. The most stable conformation of the protein assists the processive
mechanism in which the remaining oligosaccharide chain slides through the active
site after the removal of the product from the open cleft.

Further distortion in the sugar ring at subsite -1 has been observed during
the hydrolysis process. Distortion in the pyranose ring at the site of potential
enzymatic cleavage was first observed in the crystal structure of β-D-glycosidase
(44, 45). This distortion to a half-chair conformation results in a quasi-axial
orientation of the glycosidic bond and leaving group to allow in-line nucleophilic
attack of the anomeric carbon atom. In addition, the structural change in
the pyranose ring reduces steric hindrance by hydrogen atoms [Figure 5B].
Electrophilic migration of the anomeric center along the reaction coordinate is a
general feature observed in all GHs [Figure 5]. A QuantumMechanical/Molecular
Mechanical (QM/MM) study on the Michaelis complex of 1,3-1,4-β-Glucanase
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Figure 4. Schematic description of a hypothetical processive mechanism in
family 48 enzyme. Adapted from Ref. (30).

Figure 5. (A) Stoddart’s diagram. (B) Chair conformation of the beta-glucose.
Adapted from Ref. (50).
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(41) indicated that there would be a further ring distortion to the 4H3 half-chair
conformation at the transition state. The extent of the distortion from the
undistorted 4C1 conformation can be quantified by a set of oligosaccharide
torsion angles and ring puckering parameters (46). Moreover, a recent QM/MM
investigation (42) of glycoside hydrolase family 8 (GH8) also showed that the
glucosyl residue in subsite -1 in the Michaelis complex is in a distorted ring
conformation, agreeing with the crystal structure.

5. Previous ab Initio and Molecular Dynamics Studies of GHs

Jones et al. performed computer simulation studies to elucidate the roles of
aspartic acids D221, as the acid catalyst, and D175, as the base catalyst, in the
active site of Cel6A (25). They modeled several reaction intermediates starting
from different experimental 3D structures of the wild type and mutants. The
crystal structure of unliganded enzyme shows a short hydrogen bond between
D221 and D175 and a separation of 3.07 Å between the carboxyl proton of D221
and the glycosidic oxygen. Their MD simulation studies (with AMBER (46)
all-atom force field for the protein and GLYCAM (47) force field for saccharides)
suggested that this hydrogen bond had to be broken. An initial model structure
for the active enzyme was generated by rotating the D221 side chain toward
the glycosidic oxygen. The sugar ring at the -1 subsite was found to have a
skew-boat conformation (2S0) in the ground state. The water molecule for the
nucleophilic attack at the anomeric center was held tightly by the hydrogen
bonding interactions with S181, the carbonyl group of D401 as well as a second
water molecule that connects to the base catalyst D175 via hydrogen bonds. The
distance between C1 and the water molecule was 3.6 Å in the ground state, while
it was 3.0 Å at the transition state. The proton donor D221 was also found to
form a hydrogen bond with O4 of the glucosyl unit at the +1 site. The geometry
of the high energy and unstable oxycarbenium-type transition state [Figure 7] in
a boat conformation (2,5B) was obtained from ab inito calculations with Gaussian
94 (25). In the product state, the sugar ring at -1 subsite of α-cellobiose relaxed
back to a chair conformation [Figure 7]. The energetic trend associated with
the anomeric effect (49) and intramolecular hydrogen bonding was efficiently
reproduced by AM1 method (48).

Greg and Williams (24) studied the free-energy pathway for the inverting
reaction mechanism of human O-GlcNAcase involving substrate-assisted
catalysis for the hydrolysis of N-acetyl-glucosaminides using the potential
of mean force approach and the weighted histogram analysis method (see
below). The reaction coordinate was the combination of the distances between
anomeric carbon-glycosidic oxygen and anomeric carbon-acetamido oxygen. The
free-energy profile corresponding to this reaction coordinate showed a plateau
region near the transition state with the barrier height ~10.1 kcal/mol (activation
energy). Ring conformational space sampled by the QM/MM trajectories along
the reaction coordinate indicated that the protonated hemiacetal A (reactant
state) was generally in the 2S0 conformation whereas the distorted transition
state geometry fell to the 3H4 and 4E regions, consistent with the existing X-ray

142

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

3,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

7

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



crystallographic and KIE data (41). Recently, Parrinello et al. (50) performed
ab inito metadynamics simulations on the gas-phase β-D-glucopyranose in
the study of the conformational free energy landscape with respect to the ring
distortion. Nine free-energy minima were observed with 4C1 as the most stable
conformation. The relative energies of the distorted ring conformations for B3,0,
B3,0/2S0, B2,5, 1S5, 1,4B/1S3, 3,0B, B1,4, and 2,5B/5S1 in comparison to the stable
4C1 chair conformer were calculated to be 2.6, 3.0, 5.5, 5.8, 6.3, 7.2, 7.9, and
9.0 kcal/mol, respectively. The transformation of the 4C1 chair conformation to
any other conformer requires at least 8 kcal/mol of activation energy. Previous
calculations on Michaelis complex (41) showed that QM/MM protocols can
predict a good mimic of the transition states in GHs.

X-ray crystal structures of GHs in complex with substrate, product, and
intermediate shed some lights on the different steps of the reaction pathways.
However, experimental studies provide little information on the detailed
conformations of high energy transition states along reaction coordinates. Recent
QM/MM investigations on GH8 (42) and Cel5A (see below) provided important
insights in this regard.

Figure 6. Conformational changes in the sugar ring at subsite -1. Adapted from
Ref. (5).

Figure 7. Geometries of transition and product states in Cel6A. Adapted from
Ref. (25).
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6. Model Setups and Methods for the Present Study

In the next sections, the results from our QM/MM simulations on the
glycosidic bond cleavage are presented. The catalytic nucleophile and the
acid/base residues in Cel12A are Glu120 (Glu228 in Cel5A) and Glu205 (Glu139
in Cel5A), respectively. Based on available crystal structures of Cel12A (27)
and Cel5A (51), the two steps of the retaining mechanism, glycosylation and
deglycosylation, are investigated, respectively.

The X-ray structure of Cel12A in complex with cellotetraose between the
-2 to +2 sites was chosen as the initial structure for the study of glycosylation
[Figure 8A] (27). Sugar units between the -2 to +2 subunits, Glu120 and Glu205,
are included in the QM region. The deglycosylation process involving attack of a
water molecule at the anomeric carbon was studied for Cel5A using the available
crystal structure of trapped 2-fluoro-2-deoxy-cellotriosyl-enzyme intermediate
[Figure 8B] (51). Free energy profiles from two independent initial models
were compared. Finally, we estimated the ring distortion at subsite -1 due to the
bond cleavage. Altogether, our computer simulation results provide a detailed
description of the reaction mechanism.

A fast semi-empirical density-functional approach (SCC-DFTB) (52)
implemented in the CHARMM (53) program was used for the QM/MM reaction
calculations and free energy simulations. The efficiency of SCC-DFTB method
makes it possible to sample enzyme systems with a relatively large quantum
mechanical region, while high-level first-principle ab initio methods are not
feasible to carry out such tasks even in a QM/MM framework. Moreover,
recent studies indicated that the SCC-DFTB method could reliably describe the
structures of hydrogen bonding systems (54, 55). This was relevant in the current
study as we found that the hydrogen bonding and proton transfers play important
role in the retaining reaction mechanism. However, it should be pointed out that
the SCC-DFTB method has systematic errors such as in the description of the
hydrogen bonding energies (by about 1-2 kcal/mol) (55, 56). New developments
have been undertaken to improve the reliability and transferability of SCC-DFTB
approach in the description of hydrogen bonding and proton affinities of biological
macromolecules (55, 57, 58). The CHARMM force field was used for both
enzyme and carbohydrate. A modified TIP3P water model was employed for the
solvent (59). Stochastic boundary (SB) was used for the QM/MM simulations
(60). The reference center for partitioning the system was chosen to be the
anomeric carbon (C1) atom at subsite -1 and a sphere with radius of 22 Å was
used for the reactive region of the SB boundary (60). The QM region included
the sugar rings near the active site, nucleophile, and the acid/base residues as well
as the nucleophilic water molecule in the deglycosylation process. The rest of
the system was treated in MM region. The link atom approach (61) was used to
separate the covalent bonds between the QM and MM regions.

To simulate both the glycosylation and deglycosylation processes, the reaction
coordinate (RC, which is different depending on the processes. See below) was
selected as the distance difference between the C-O bond that breaks and the C-
O bond involved in the nucleophilic attack. For the glycosylation catalyzed by
Cel12A, harmonic restraints with force constant of 500 kcal/mol/Å2were added to
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Figure 8. (A) Structure of H. grisea Cel12A (ribbons) in complex with a
cellotetraose (spheres), occupying the -2 to +2 sites at the substrate binding cleft,
pdb code 1W2U (27) (B) Structure of B. agaradhaerens Cel5A glycosyl-enzyme
intermediate. The glycosyl occupies the -1 to -3 binding sites. The enzyme is

shown in ribbons and the glycosyl in spheres, pdb code 1H11 (51).

the RC to guide the glycosylation process. A minimization protocol was adapted,
in which the QM region was fixed to relax the MM region first, then the MM
region was fixed to relax the QM region. This procedure was repeated until the
non-restrained potential energy of the system converge to a threshold of 0.1 kcal/
mol. The RC value was increased stepwise from -3.3 (the reactant complex) to 3.3
Å (the intermediate complex), with the step size of 0.1 Å; then the RC value was
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decreased from the product complex to the reactant complex. The forward and
backward progresses were repeated in order to obtain a smooth and more reliable
potential energy surface (PES) profile along the RC path.

The umbrella sampling (62) method was used to study the deglycosylation
catalyzed by Cel5A. Harmonic potentials with a force constant of 500 kcal/mol/Å2

were used in 23 simulating windows, each of which had 100 ps of equilibration
and 50 ps of production run. The weighted histogram analysis method (WHAM)
(63) was applied to determine the change of the free energy (potential of mean
force or PMF) for the deglycosylation.

7. QM/MM Simulations on Cel12A and Cel5A

Humicola grisea Cel12A and Bacillus agaradhaerens Cel5A belong to the
glycoside hydrolase family 12 (GH 12) and family 5 (GH 5) endoglucanases,
respectively. H. grisea Cel12A has 224 amino acids and presents a characteristic
fold of the GH 12 cellulases. A 35 Å long substrate-binding cleft on the concave
surface of Cel12A is formed by a 9-strand β-sheet, see Figure 8A (34). B.
agaradhaerens Cel5A (51) has 303 amino acids and presents a (α/β)8-barrel fold
with a shallow-groove active site [see Figure 8B]. The members of the both
GH 12 and GH 5 families cleave the glycosidic linkage of cellulose through
the retaining mechanism. The two steps, glycosylation and deglycosylation, are
involved in this mechanism [Figure 2]. Here we used the QM/MM method to
study the glycosylation step catalyzed by Cel12A and the deglycosylation step
catalyzed by Cel5A, respectively.

7.1. Glycosylation Catalyzed by H. grisea Cell12A

The first model system was built on a Michaelis complex of Cel12A and a
cellulose tetramer (cellotetraose) (64) bound to the -2 to +2 subsites (pdb code
1W2U, resolution 1.52 Å) (27). Figure 9 shows the active site of the Cel12A
Michaelis complex. In the glycosylation reaction, two glutamic acids, Glu120 and
Glu205, act as the nucleophile and the general acid, respectively. The distance
between the Oε2 atom of Glu205 and the O4 atom of glucose at the +1 site (i.e.,
the oxygen atom of the β-1,4-linkage) was 2.7 Å, which indicates that Glu205 may
be protonated at Oε2 to function as the proton donor (general acid) to facilitate
the glycosidic bond cleavage. The second glutamic acid, Glu120, is expected to
function as a nucleophile to attack the anomeric carbon C1 at the subsite -1. In the
study, the reaction coordinate (RC) was set as:

The atom names are given in Figure 9. Though the reaction coordinate only
included the nucleophilic attack and the corresponding bond cleavage [i.e., the
bond formation involving C1(subsite -1) and Oε1(Glu120) and the bond breaking
involving C1(subsite -1) and O4(subsite +1)], the proton transfer from Oε2
of Glu205 to O4 of subsite +1 happened spontaneously during the QM/MM
simulations.
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Figure 9. Active site of the H. grisea Cel12A Michaelis complex (pdb code
1W2U) (27) and the glycosylation catalyzed by Cel12A.

Figure 10A shows the potential energy profile along the RC. Three snapshots
obtained from the simulations representing theMichaelis complex or reactant state
(RS), the structure near transition state of glycosylation (TS1), and the glycosyl-
enzyme intermediate state (IS) are shown in Figure 10B. The potential energy
barrier for the glycosylation was calculated to be 20.5 kcal/mol. The glucose at
subsite -1 showed the 1S3 (RS) → 4H3 (TS1) → 4C1 (IS) comformational changes
[Figure 10B]. These conformational changes are commonly observed in the GH-
catalyzed reactions (see section 4 above).

It should be pointed out that the transition state (TS1) was approximated as
the structure at the top of the potential energy profile [Figure 10A] without further
frequency analysis. This approximation, however, should correctly reflect the
distortion of glucose ring during the reaction. At TS1, r(C1-O4) and r(C1-Oε1)
were 2.15 Å and 2.34 Å, respectively. At TS1, partial proton transfer fromGlu205-
Oe2 to O4was observed to form a short-strong hydrogen bondwith r(O4-H) = 1.18
A and r(Oe2-H) =1.27 A, respectively [Figure 10B].

Some hydrogen bonding interactions may play an important role in the
glycosylation. For instance, the carboxyl sidechain of Asp103 (was treated
by MM and not shown in Figure 10) formed a strong hydrogen bond with
Glu120-Oe2. This hydrogen bond existed during the glycosylation, indicating
that Asp103 may play a role in the catalysis by e.g., proton shuffling with Glu120.
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Figure 10. (A) Potential energy profile of the glycosylation catalyzed by H. grisea
Cel12A. (B) Snapshots of the QM/MM simulation. RS: the reactant state (Left);
TS1: the transition state (Middle); IS: the glycosyl-enzyme intermediate state
(Right). The glucose at subsite -1 is shown in balls and sticks, and that at subsite

+1 is shown in lines. Other glucose subunits are not shown for clarity.

Further simulations with Asp103 treated by QM may be helpful in understanding
of the mechanism for Cel12A catalysis.

In the Michaelis complex, the 3-hydroxyl group at subsite +1 formed
a hydrogen bond to Glu205. After the glycosylation, Glu205 acted as the
hydrogen bond acceptor to the both 3-OH and 4-OH groups of the newly formed
glycosyl-enzyme intermediate. Interestingly, the results were consistent with
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Figure 11. Active site of the B. agaradhaerens Cel5A glycosyl-enzyme
intermediate (pdb code 1H11) (51), and the deglycosylation catalyzed by Cel5A.

another crystal structure of H. grisea Cel12A in complex with a β-D-cellobiose at
subsites +1 and +2 (pdb code 1UU4) (27).

7.2. Deglycosylation Catalyzed by B. agaradhaerens Cel5A

The second model system was based on a glycosyl-enzyme intermediate
of Cel5A, bound with a 2-deoxy-2-fluro-β-D-cellotrioside (pdb code 1H11,
resolution 1.08 Å, Figure 11) (51). During the model building, the 2-fluro group
of the substrate was manually changed to 2-hydroxyl group. The starting structure
was therefore a glycosyl-enzyme intermediate of Cel5A with a β-D-cellotriose
that occupied the -1 to -3 binding site.

The umbrella sampling (62) and weighted histogram analysis methods
(WHAM) (63) were used to determine the PMF profile of the deglycosylation
process in Cel5A [Figure 12]. In the glycosyl-enzyme intermediate of Cel5A,
Oε2 of Glu228 was covalently bonded to C1 at subsite -1, and a water molecule,
W1, hydrogen bonded to the general base residue Glu139. The QM region of this
model included the subsite -1, Glu139 and Glu228 sidechains, as well as the W1
water molecule. The reaction coordinate (RC) was selected as:

The atom labels are shown in Figure 11. The RC included the distance associated
with the nucleophilic attack of the W1 water molecule [r(C1-O1)] and that for the
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bond breaking [r(C1- Oε2)]. The proton transfer from W1 to Glu139 happened
spontaneously during the nucleophilic attack.

The free energy barrier for the deglycosylation was calculated to be 24.2
kcal/mol [Figure 12A]. The snapshots obtained from the QM/MM free energy
simulations representing the glycosyl-enzyme intermediate state (IS), the structure
near the transition state (TS2), and the product state (PS) in the deglycosylation
are shown in Figure 12B. In IS, subsite -1 is in the 4C1 chair conformation, similar
to the glycosyl-enzyme intermediate after glycosylation catalyzed by H. grisea
Cel12A (see above). For the structure near the transition state (TS2), subsite
-1 adopted the 4H3 conformation, which was converted back to an undistorted
4C1 chair in the product state (PS). TS2 is the structure located at the top of free
energy profile [Figure 12A] and represents the approximate transition state of
deglycosylation. At TS2, r(C1-Oε2) and r(C1-O1) were 2.06 Å and 2.24 Å,
respectively. The water molecule W1 did not transfer proton to Glu139 yet with
r(Oε1-H) = 1.71 Å [Figure 12B]. The distances were averaged from 1000 frames
of the corresponding window in the free energy simulations. Atom labels are
shown in Figure 11 and Figure 12B.

The hydrogen bonding interactions in the deglycosylation process are
also likely to play an important role. In the glycosyl-enzyme intermediate of
deglycosylation in Cel5A (IS in Figure 12B), Tyr202 acts as a hydrogen bond
donor to Glu139 and helps to maintain the position of Glu139 to act as the general
base. With the progress of deglycosylation, this hydrogen bond was disturbed
and vanished in the product state after the reaction. This may be due in part to
the protonation and sidechain rotation of Glu139. Another interesting hydrogen
bond donor was the 2-OH group of glucose at subsite -1. This hydrogen bond
initially interacts with the Oε1 atom of the negatively charged Glu139. It was then
switched to interact with the Oε2 atom of Glu228 (especially, near the product
state) when the C1- Oε2 bond was broken and Glu228 was negatively charged.
It seems that the orientation of the 2-OH group at subsite -1 was affected by the
charge transfer from Glu139 to Glu228 during deglycosylation.

Recently, a QM/MM study (65) of Cel5A was published using the similar
simulation approaches mentioned above (e.g., the SCC-DFTB QM method and
PMF simulations), but based on a different X-ray structure. Specifically, the X-ray
structure of Cel5A from A. cellulolyticus complexed with a cellotetrose substrate
molecule (PDB ID: 1ECE) was used to generate the model for the investigation
of the both glycosylation and deglycosylation processes by Liu et al. (65). One
major difference between the deglycosylation process studied in Ref. (65) and our
work discussed earlier is that the glycosyl-enzyme intermediate used by Liu et al.
was generated from the simulations of the glycosylation step, while our study was
directly based on the X-ray structure of the glycosyl-enzyme intermediate (51).
Interestingly, our free energy barrier (24.2 kcal/mol) is somewhat lower than the
one (29.7 kcal/mol) obtained by Liu et al. The experimental activation barrier
for the hydrolysis of cellotetraose catalyzed by Bacillus agaradherans Cel5A was
estimated to be about 19.4 kcal/mol (65, 66). It is not clear at this stage as to why
the free energy barriers for deglycosylation from the two simulations are different.
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Figure 12. (A) Free energy profile of the deglycosylation catalyzed by B.
agaradhaerens Cel5A. (B) Snapshots from the QM/MM free energy simulation.
IS: the glycosyl-enzyme intermediate state (Left); TS2: the structure near the
transition state (Middle); PS: the product state (Right). Only glucose at the

subsite -1 is shown for clarity.

8. Conclusions
In summary, we selected two endoglucanases, the Michaelis complex of

H. grisea Cel12A and the glycosyl-enzyme intermediate of B. agaradhaerens
Cel5A, to study the glycosylation (Cel12A) and deglycosylation (Cel5A) steps,
respectively, that are catalyzed through the retaining mechanism. The QM/MM
methodology was used to calculate the potential energy and free energy profiles
for the Cel12A and Cel5A systems, respectively. In the Cel12A Michaelis
complex, the glucose at subsite -1 was in a 1S3 skew boat conformation. The
sugar ring distortion to a 4C1 chair glycosyl-enzyme intermediate via 4H3
transition state was found in the glycosylation catalyzed by Cel12A. The Cel5A
glycosyl-enzyme intermediate adopts a 4C1 chair conformation. Deglycosylation
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of Cel5A generated the cellulose product in a 4C1 chair conformation through a
4H3 transition state. Important hydrogen bonding interactions were observed in
the enzyme active sites and shed some important light in understanding the action
and mechanism of cellulase catalysis.
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Chapter 8

Molecular Simulation Methods

Standard Practices and Modern Challenges

Michael Feig*

Department of Biochemistry & Molecular Biology, Department of
Chemistry, Michigan State University, East Lansing, MI 48824

*feig@msu.edu

Molecular simulations are used widely to study the structure,
dynamics, and energetics of a given molecular system in atomic
detail. The basic formalism underlying molecular dynamics
and Monte Carlo simulations is described. Modern challenges
in molecular systems are discussed. Emphasis is placed on
model accuracy in current molecular force fields and the ability
to reach sufficiently long time scales. Enhanced sampling
methods are reviewed briefly and the chapter is concluded
with an overview of emerging multi-scale techniques, in
particular implicit solvent models and the construction and use
of coarse-grained models.

MD: molecular dynamics; MC: Monte Carlo; QM: quantum mechanics; GB:
Generalized Born; NVT: canonical ensemble; NVE: microcanonical ensemble;
NPT: isothermal-isobaric ensemble; PMF: potential of mean force

The Basics

Dynamics and Conformational Sampling

The power of computer simulation methods (1–3) is their ability to generate
single molecule dynamics and more generally conformational sampling of a given
system in atomic detail. The most important information from such simulations is
a description of the conformational ensemble that is visited at a given temperature.

© 2010 American Chemical Society
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Information about the relative probability of visiting different conformations
directly translates into thermodynamic quantities that can be calculated from
such data. Furthermore, it is possible to obtain kinetic information since dynamic
processes that involve transitions over kinetic barriers can be observed directly.
The resulting dynamic picture of a given system is highly complementary to
experimental probes that provide a time- and ensemble-averaged static picture
and/or do not provide full atomic resolution.

There are essentially two methods that are widely used to generate
conformational sampling of a given molecular system. Molecular dynamics (MD)
simulations generate deterministic trajectories in phase space, i.e. coordinates
and velocities, which provide both thermodynamic and kinetic information.
Monte Carlo (MC) sampling generates conformational states according to their
probabilities in the canonical ensemble, but it does not result in a trajectory that is
continuous in time so that kinetic information cannot be extracted directly. Both
methods require a potential function to accurately describe molecular interactions
and in both cases it is essential to sample all of the relevant (i.e. accessible with
high probability) conformational space before otherwise anecdotal results become
thermodynamically meaningful.

In the following, the basic components of molecular simulations are reviewed
first before recentmethods that address challenges in obtaining accurate interaction
potentials and efficient conformational sampling are described.

Interaction Potential

Molecular simulations typically employ an atomistic model with a classical
interaction potential as a compromise between accuracy and efficiency. The
potential, often called “force field”, is commonly decomposed into bonded and
non-bonded terms. The canonical form of such a force field is given in the
following equation:

The bonded terms are concerned with preserving covalent bonding
interactions which normally requires a quantum-mechanical treatment. However,
as long as reactive processes are not considered, it is sufficient to maintain bond
lengths (1-2 interactions) and angles (1-3 interactions) at equilibrium values. This
is achieved with simple harmonic restraint potentials that are parameterized to
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match structural and vibrational data from crystallography, spectroscopy, and ab
initio calculations (4).

Non-bonded terms consist of three contributions: 1) classical long-range
electrostatic attraction and repulsion between partial atomic charges according to
Coulomb’s law; 2) short-range attraction according to van der Waals dispersion;
and 3) hard-sphere like repulsion upon atomic contact formation to avoid
electronic overlap. The van der Waals and contact terms are typically modeled
as r−6 and r−12 terms, respectively, and combined into what is known as the
Lennard-Jones potential (5). Non-bonded terms are applied in full strength to
atoms separated by 4 or more covalent bonds (1-5 interactions and beyond) and are
often scaled when applied to 1-4 interactions. 1-4 interactions are also represented
by cosine series torsion potentials which are meant to explicitly reproduce the
periodic energetic variation of eclipsed vs. staggered conformations. Although
the non-bonded electrostatic interaction can in principle provide that effect,
there is often a significant quantum mechanical component to 1-4 interactions
that requires a mixing of bonded and non-bonded terms to obtain an accurate
interaction potential. In practice, non-bonded terms are parameterized first with
atomic partial charges and dispersion terms obtained from ab initio calculations
while the torsion potential is parameterized last to provide the missing 1-4
interaction energies to match results from quantum mechanics.

Often, there is also a second torsion term which does not have a periodic form
but instead restrains a torsion angle with a harmonic function. Such a term is
typically used to restrain a set of four atoms to lie in a plane. It is called an improper
torsion potential because the four atoms used in this term are not necessarily linked
by consecutive covalent bonds. Such improper torsions often compensate for the
lack of π-bonding interactions in the classical model that would otherwisemaintain
planar geometries, for example in aromatic ring systems.

Molecular Dynamics Simulations

Molecular dynamics (MD) simulations have long been known as an extremely
powerful computational technique for studying the conformational dynamics of
simple and complex molecular systems (6, 7). In MD simulations, a dynamic
trajectory is generated for each atom according to classical mechanics by following
Newton’s law of motion:

where the force Fi(r) on atom i is due to interactions with all other atoms in the
given system. The force in Eq. 2 is calculated from the gradient of the interatomic
potential V(r) as given in Eq. 1.
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Integrator

Given a starting conformation of a molecular system with a set of velocities,
Eq. 2 describes the evolution of the simulated system in phase space in a
deterministic fashion. Because of the complex form of V(r) it is not possible
to find a closed-form solution. Instead, Eq. 2 is integrated in a step-wise
fashion. Typically, a Verlet-type integrator (8) is used to maintain the energy
and momentum conservation and time-reversibility that is afforded by the
conservative Hamiltonian based on V(r). In the often preferred velocity Verlet
variant coordinates and velocities are advanced from the accelerations ai = Fi/mi
according to the following set of equations:

In this scheme, both coordinates and velocities are estimated with
uncertainties of O(Δt3).

Choice of Time Step

The time step Δt in Eq. 3 has to be chosen so that the highest frequencies in
the system are sampled sufficiently. In organic systems, the highest frequencies of
about 3000 cm-1 are associated with C-H bond vibrations. As a rule of thumb the
highest frequency should be sampled at least ten times during a full vibrationwhich
corresponds to a maximum time step of about 1 fs (9). A longer time step can be
used if holonomic constraints are used to freeze bonds involving hydrogens (e.g.
with algorithms such as SHAKE (10) or RATTLE (11)). This reduces the highest
frequency in the system so that 2 fs time steps become practical in simulations
of biomolecular and organic compounds. Even longer time steps usually lead
to simulation instabilities due to poor energy conservation unless sophisticated
multiple-time step schemes are employed (12, 13).

Statistical Ensembles

MD simulations as described so far result in conformational sampling
according to the microcanonical (NVE) ensemble because the total energy is
conserved when integrating Newton’s equation of motion. More relevant for
practical applications are the canonical (NVT) and isobaric-isothermal (NPT)
ensembles since environmental temperature and pressure are constant in many
experiments and certainly most biological systems, at least over the time scales
studied by simulation.
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Simulations in the NVT ensemble can be achieved by periodically rescaling
or reassigning velocities. Simple rescaling or reassignment of all velocities at
fixed intervals to match a given target temperature is straightforward but only
approximates an NVT ensemble. Frequent reassignment/rescaling overconstrains
the temperature since even in an NVT ensemble, the instantaneous temperature
fluctuates. On the other hand, infrequent reassignment/rescaling amounts to
piecewise NVE simulations with occasionally altered kinetic energy rather than
a true NVT simulation. A better approach is to loosely couple the system’s
temperature (or pressure) to a heat bath (or piston) via an appropriate thermostat.
There are essentially two widely used algorithms that can correctly reproduce
conformational sampling according to the NVT (or NPT) ensemble: They are
Langevin dynamics (14, 15) and the Nosé-Hoover thermostat (16, 17).

Langevin dynamics models the effect of the atomistic interactions of a given
system with the solvent in the heat bath in a physically intuitive manner. Langevin
dynamics involves stochastic collisions that cause velocity reassignment of a
randomly chosen particle in the system of interest as well as drag forces due to
friction as a function of particle velocities in order to allow dissipation of energy
back into the heat bath. Langevin dynamics employs the following modified
equation of motion:

where f is the friction coefficient of the heat bath and Frandom is the stochastic force
simulating random collisions with solvent molecules. To maintain a physically
accurate model, stochastic collisions and drag forces should only be applied to
the parts of a system that would be in contact with the (fictitious) thermal bath.
This poses technical challenges because typical simulations with explicit solvent
involve periodic systems where the interface with the thermal bath is not clear.
Instead, Langevin dynamics is often applied to all atoms in a given system thereby
effectively altering the hydrodynamic characteristics of the explicitly represented
solvent. Langevin dynamics is especially important for producing correct kinetics
when the solvent environment is represented in an implicit fashion (see below) (18,
19). In fact, Langevin dynamics by itself can be used as a primitive implicit solvent
model for systems that do not interact strongly with the solvent environment (20).

Nosé-Hoover thermostats do not suffer from the limitations of Langevin
dynamics but involve a theoretically motivated extended Lagrangian formalism
that is physically less intuitive. Essentially, Nosé-Hoover dynamics introduces
an extra degree of freedom to represent the thermal bath. This extra degree of
freedom is propagated along with the rest of the system and can exchange kinetic
energy with the rest of the system by scaling velocities of the real degrees of
freedom appropriately. Nosé-Hoover dynamics involves the following modified
equations of motion (16, 17):
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where pi is the momentum of particle i, g is the number of degrees of freedom,
k is the Boltzmann constant, and T is the temperature of the thermal bath. Nosé-
Hoover dynamics can be compared to Langevin dynamics by recognizing that the
extended variable ζ acts like a friction constant. In contrast to Langevin dynamics,
ζ is dynamically coupled to the temperature bath according to the coupling constant
q and can have both positive and negative values. As a result, some amount
of kinetic energy is exchange with the heat bath at every step of the simulation.
This allows the kinetic energy to fluctuate appropriately and, in the end, producer
correct statistics for an NVT ensemble.

Interpretation of Simulations and Convergence

The most immediate result from an MD simulation is a single molecule
trajectory of a given molecular system. Although the corresponding molecular
“movie” is visually impressive and can often provide important qualitative
insight, the exact course of the trajectory is actually not especially meaningful.
MD processes are essentially chaotic systems. As a consequence, an individual
trajectory is extremely sensitive to the specific starting conditions. Changes in
the starting coordinates of less than 10-3 Å, which is well below experimental
uncertainties, typically result in an entirely different trajectory after propagation
over hundreds of picoseconds. Furthermore, methodological uncertainties and
the approximations inherent in the discrete integration of Newton’s equation
of motion result in deviations from what would be the “correct” trajectory if
the same exact starting configuration could be prepared experimentally. Those
deviations are amplified again because of the chaotic nature of MD. However,
MD simulations on average generate a correctly weighted sampling of different
conformations according to their relative energies. Simply stated, high energy
conformations are not visited as often as low energy conformations because
the gradient of the interaction potential always generates forces from high to
low energies. High energy states are only reached if sufficient kinetic energy is
available to overcome the opposing force due to the potential energy.

It is the averaged sampling of different conformational states (and transition
paths between them) according to their relative statistical weights that is the most
meaningful result from MD simulations. This requires that MD simulations can
at least in principle visit all conformational states and that in reality they visit
all “relevant” states. The first requirement is fulfilled if the sampling is ergodic,
i.e. the time average of any thermodynamic property approaches the ensemble
average in the limit of infinitely long simulations. Non-ergodic sampling is
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possible under certain conditions (21), but it is typically not an issue in common
MD simulations. The second requirement goes to the heart of the issue of
convergence. Simulations have to be long enough to actually visit all of the
states that are within a few multiples of kT from the lowest energy conformation
since those states are populated at a significant fraction and therefore contribute
to any thermodynamic properties that are extracted from the simulation. While
non-convergence is easy to diagnose, the achievement of full convergence can
typically not be affirmed without previous characterization of a given system.
Statistical sampling can be improved significantly with multiple MD simulations
instead of a single long simulation and with enhanced sampling techniques (see
below), but convergence is a constant concern with most MD simulations and the
lack thereof has a direct impact on the reliability of quantitative predictions.

Monte Carlo Sampling

Monte Carlo (MC) simulations are conceptually much simpler than MD
simulations. The basic Metropolis-MC algorithm consists of the following
three steps (22): First, a new conformation is generated from a given initial
conformation. Second, the energy of the trial conformation is calculated
according to a given potential function. Third, the new conformation is either
accepted or rejected as the starting conformation for the next cycle according to
the probability:

The third step is commonly implemented by generating a random number
between 0 and 1 that is compared against the probability P according to Eq. 6 (22).
If the random number is less than P the new conformation is accepted, otherwise
it is rejected.

MC simulations directly implement stochastic sampling according to the
statistical weights in the canonical (NVT) ensemble as long as the selection of
new conformations in the first step is ergodic and unbiased. In particular the
detailed balance condition should be fulfilled, i.e. the probability of selecting a
new conformation 2 from an initial conformation 1 should be the same as the
probability of selecting 1 if 2 were instead given as the initial conformation.
Otherwise, there is no restriction for how new conformations are generated during
MC sampling. However, the efficiency of MC simulations depends on how often
new conformations are accepted or, in other words, whether a significant fraction
of the new conformations that are generated have a similar or lower energy
than the initial structure. MC simulations can be potentially very powerful in
cases where it is possible to “guess” new conformations on the other side of a
transition barrier, thereby avoiding the kinetics of actually crossing the barrier
that limits the conformational sampling in MD simulations. However, the price
of such flexibility is the loss of a temporal relationship between consecutive
conformations so that real-time dynamics and kinetics cannot be extracted in the
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same manner as from MD simulations. If kinetic rates are known, it is possible,
however, to study the time evolution of a given system with the modified kinetic
MC scheme (23).

In practice, MC simulations are used most frequently for simple systems or
simple models of more complex systems where it is easy to design move sets that
result in high acceptance ratios. In some cases, MC simulations are the only option,
e.g. for lattice models where MD simulations that require a continuous space
representation are not applicable. However, for fully solvated, condensed-phase
molecular systems, MC simulations are usually only as effective as or even less
effective than MD simulations because essentially all large conformational moves
would result in high-energy states due to steric clashes (24). As a consequence,
MC simulations are not widely used for such systems.

Quest for Accuracy

Force Field Accuracy

A critical factor in molecular simulations is the accuracy of the interaction
potential which ultimately determines the level of realism that can be achieved.
The canonical functional form of a molecular force field as given in Eq. 1 contains
a large, but finite number of parameters that could in principle be optimized against
a suitable set of target data to obtain an “optimal” force field. Target datamay come
from experimental data or ab initio calculations. Experimental data often involve
ensemble- and time-averaged thermodynamic, structural, or dynamic quantities.
In order to calculate such quantities with a given force field, time-consuming
conformational sampling from long simulations is usually required. A systematic
search of parameter space to optimize the agreement between the calculated and
experimental data is therefore often impossible and a trial-and-error strategy is
pursued instead. In the case of ab initio data, the calculation of target data from
quantummechanics is the limiting factor while the resulting optimized geometries,
single point energies, and vibrational frequencies are readily calculated from a
given force field. A systematic parameter optimization procedure base on ab initio
data is thus feasible if enough target data is available.

To overcome some of the issues with force field parameter optimization,
force fields are commonly designed in a modular fashion (25). In this case, each
module corresponds to a certain chemical subunit that is parameterized through
comparison with target data for a corresponding model compound. For example,
phenol would serve as the model compound for parameterizing the amino acid
side chain tyrosine and typical target data would involve crystallographic or ab
initio geometries, heats of vaporization, free energies of solvation, and interaction
energies with water molecules. For a sufficiently small chemical subunit, full
parameter optimization is then possible.

A modular design also provides transferability of a given force field to
a wide variety of molecules. However, it is not always straightforward to
extend parameters optimized based on small compounds to larger molecules
and to a variety of different environments. For example, partial charges or
Lennard-Jones parameters optimized based on vacuum ab initio calculations or
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based on interaction energies with water molecules are not necessarily optimal
for interactions in the interior of a large macromolecule or with a hydrophobic
solvent. As a result, it is essentially impossible to obtain a universally optimal
set of parameters (26). Rather, different sets of parameters may reflect different
compromises between modularity, transferability, and accuracy for specific
systems that is manifested in a large number of different established force fields
for a given type of molecule.

There are a number of commonly used force field families (CHARMM
(25), Amber (27), OPLS (28), and Gromos (29) for peptides and proteins;
CHARMM (30) and Amber (27) for nucleic acids; CHARMM (31), Gromos
(32), and Glycam (33) for lipids; CHARMM (34, 35) and Glycam (36) for
carbohydrates, TIP3P/TIP4P (37) or SPC/E (38) for water). In each family are
multiple versions as a result of adjustments to better reflect target data. New
target data has recently become available from experiments that focus more
extensively on structure and dynamics of smaller model systems, such as NMR
characterizations of short peptides. At the same time, increased computational
power now allows for systematic ab initio calculations of a large number of
different conformational states along the most important degrees of freedom of a
given system (39). However, the main impetus for force field reparameterizations
has resulted form an ability to run simulations over much longer time scales
than when the force fields were originally parameterized. In many cases, such
simulations have revealed, and continue to reveal, pathologies that had remained
undetected previously. For example, the ability to run stable simulations of DNA
over multiple nanoseconds following the introduction of the Ewald summation
technique revealed that early CHARMM and Amber nucleic acid force fields
strongly biased DNA conformations towards A- and B-forms, respectively (40).
Both force fields were subsequently adjusted to shift the equilibrium towards
B-DNA with the CHARMM force field and to facilitate sampling of A-DNA
conformations with the Amber force field in response to A-DNA-inducing solvent
environments.

A continuous focus in the development of peptide and protein force fields
has been the accurate representation of the equilibrium between α, β, poly-proline
II (PPII), and αL backbone conformations because of its ramifications for the
sampling of protein secondary structures. A recent innovation in this context
has been the introduction of a spline-based cross-correlation map (CMAP)
between overlapping and ψ backbone torsions which provides a mechanism for
directly encoding a desired /ψ-map (41). While this approach is in principle
extremely powerful, the problem remains with the choice of the target /ψ-map.
An initial implementation within the CHARMM force field family based on an
ab initio /ψ-map of alanine dipeptide has been able to resolve previous issues
with overstabilized π-helices and resulted in improved stability in native protein
simulations (42). However such a force field does not appear to provide the
correct relative statistical weight between conformations in the α and β-basin
(43). In particular, experimental data indicating that the PPII conformation within
the β-basin is the preferred conformational state for short alanine-based peptides
(44) is not reproduced well by the CHARMM force field with a CMAP potential
based on alanine dipeptide ab initio data – or with most other force fields for that
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matter (43). One exception is the ff99sb version of the Amber force field which
explicitly favors PPII conformations for short alanine peptides (45). However, the
CHARMM/CMAP force field accurately represents the relative conformational
sampling of α- and β-states in native proteins despite its apparent overstabilization
of helical conformations at the peptide level (46). From these observations, it
appears that recent force field versions might be converging when it comes to
protein simulations (47), but it is likely that there will be further optimizations at
the peptide level in future force field versions.

Polarizable Force Fields

A major approximation of commonly used force fields is the fixed nature
of partial atomic charges. In reality, both solute and solvent will polarize in
response to specific interactions. Polarization effects are most important when
strong electrostatic fields are present or when the relative energetics of a given
system in different environments are considered, for example in interactions with
ions or transfer between aqueous and hydrophobic media. Polarization effects
may involve conformational rearrangement and/or a redistribution of the electron
densities. The conformational rearrangement is possible in fixed charge force
field but electronic redistribution is not.

Over recent years, a number of efforts have attempted to incorporate
electronic polarization in classical force fields.. There are essentially three main
routes that have been followed (48): Fluctuating charges according to atomic
polarizabilities (49–52), induced dipoles and higher-order multipoles (53, 54),
and Drude oscillators (55) that introduce a dynamically fluctuating off-center
charge site. Even more so than for fixed charge force fields, parameterization is
a major issue. Furthermore, polarizable force fields incur substantial additional
cost, in part due to extra calculations, e.g. to calculate multipole-charge and
mulipole-multipole interactions or to iteratively determine the charge response to
molecular electric fields, and in part due to the need for shorter integration time
steps of 0.5 to 1 fs to maintain stable trajectories. As a result, first applications of
complex molecular simulations with polarizable force fields have only just began
to appear (56–58), but it is likely that polarizable force fields will have a broader
impact in the future.

QM/MM

Classical force fields, even polarizable force fields, still represent significant
approximations of the quantum nature of atomic interactions. In particular,
standard classical force fields do not allow bond-breaking or charge transfer and
therefore exclude any type of reactive chemistry. While full quantum-mechanical
sampling of larger molecular systems is not yet feasible, hybrid QM/MM
(quantum mechanics/molecular mechanics) schemes are often employed to study
reactive processes and other processes that are not well described by a classical
force field (59). The idea of the QM/MM approach is to represent a small part of
a given system, for example an enzyme active site, at the quantum mechanical
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level. The remaining part of the system and environment would be treated
classically in order to save computer time.

The total energy of a QM/MM system consists of the QM energy for the
quantum region, the MM energy for the classically treated surrounding parts
of the system, and a coupling term that describes interactions between the MM
and QM regions. While the calculation of MM and QM energies is relatively
straightforward, the coupling term and the design of the QM-MM boundary
present technical difficulties that are addressed in different QM/MM schemes.
Although QM/MM methods have been proposed long time ago (60), QM/MM
simulations remain very challenging and cost-intensive and are still largely at the
developmental stage (61).

Quest for Speed

Time Scales

The need for long simulations to achieve convergence in molecular
simulations essentially requires that the simulation length is on the order of the
longest time scales of relevant dynamic processes. “Relevant processes” involve
transitions to configurations with significant statistical weight or to configurations
that are otherwise important for understanding a given system. For example,
folding-unfolding transitions of proteins occur on long time scales up to seconds,
but under native conditions the unfolded state of proteins is only populated to a
very small extent for most proteins. Hence, simulations much shorter than folding
time scales would provide meaningful quantitative results for many systems.
On the other hand, rare native-state fluctuations with low statistical weight
may be important for understanding dynamic intermediates or may represent
conformations that are selected for in interactions with other molecular species.

Typical macromolecular time scales range from nanoseconds for minor
conformational changes to hundreds of nanoseconds for loop motions and micro-
to milliseconds for larger conformational rearrangements. The need for a 1-2 fs
integration time step effectively limits total simulation times to microseconds,
possibly tens of microseconds for small systems on current computer hardware
(62–64). If polarizable force fields or QM/MM methods are employed, the time
scales that can be reached are much shorter, on the order of tens of nanoseconds
(58). This means that converged sampling is only possible for some dynamic
molecular processes with standard all-atom MD simulations.

Many efforts have focused on bridging the discrepancy between what time
scales can be reached with molecular simulations and what time scales need to
be reached to study a variety of dynamic processes. There are essentially four
directions that can be pursued to reach longer time scales in molecular simulations:

1) Faster computer hardware invariably results in longer simulations. Over
the last three decades, improved computing power and in particular
efficient use of parallel computers alone have increased simulation
lengths by about 4-5 orders of magnitude. Further acceleration can come
from specialized hardware such as the use of GPUs or custom-designed
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hardware which has the potential to increase simulation times by another
2-3 orders of magnitude and bring millisecond simulations into the realm
of possibility (65, 66).

2) Algorithmic advances may allow MD simulations to be carried out faster
without significant loss of accuracy. These address in particular the
dominant cost of calculating non-bonded interactions. Most successful
in this regard has been the Ewald summation technique which is a
reformulation of the Coulomb potential for periodic systems as a sum
of short- and long-range contributions in such a way that the long-range
contribution can be calculated rapidly with the help of a fast Fourier
transformation (67, 68). Other ideas that have been met with partial
success involve the use of multiple time steps for short and long-range
interactions so that the long-range interactions do not have to be
evaluated at every step (12, 13) and the use of fast multipole schemes to
approximate long-range electrostatic interactions (69).

3) The time scales of a molecular system are fundamentally determined by
the kinetic barriers in a given energetic landscape. Simulations can be
greatly accelerated if barrier crossing rates are enhanced. This may be
achieved with a variety of biased and enhanced simulation techniques
which increase the accessible time scales by several orders of magnitude.
In such simulations, kinetic information is lost, but it is usually possible
to recover unbiased equilibrium properties with appropriate reweighting
schemes.

4) Model approximations decrease the system complexity so that longer
simulations of larger systems can be run at reduced costs. This may
be accomplished through implicit descriptions of the environment (70),
coarse-graining (71, 72), or more advanced multi-scale schemes (73),
where lower-resolution representations and more accurate models are
alternated.

In the following, enhanced sampling techniques and multi-scale simulation
methodologies are described in more detail since they are widely used in modern
MD simulations.

Enhanced Sampling Techniques

The general idea of all enhanced sampling techniques is to facilitate the
crossing of kinetic barriers. Specific enhanced sampling techniques such as
umbrella sampling methods target known barriers directly while non-specific
enhanced sampling methods such as temperature replica exchange simulations
accelerate the crossing of all barriers in a system and/or smooth the overall energy
landscape.
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Biased Sampling

The basic form of biased sampling, called umbrella sampling, involves the
addition of a biasing potential to the standard interaction potential (74). Typically,
the biasing potential has a harmonic form as given in Eq. 7:

where ζ is a reaction coordinate along which there is a kinetic barrier at ζ0 and k
is the force constant. Such a potential biases sampling towards values of ζ near ζ0
thereby compensating for the energetic cost associated with crossing of the barrier.
The choice of a suitable reaction coordinate ζ is critical for the success of umbrella
sampling methods, but not always straightforward, especially in more complex
molecular systems.

It is possible to recover the unbiased probability distribution from the biased
simulation. In the presence of an umbrella potential, simulations are carried out
with the following effective energy function:

where the unbiased energy function consists of both kinetic and potential energies.
The unbiased probability function as a function of the reaction coordinate ζ,
punbiased(ζ), is formally given as:

Multiplication of Eq. 9 with ∫e−βEbiased(rN)drN / ∫e−βEbiased(rN)drN = 1 and substitution
of Eunbiased(rN) according to Eq. 8 gives:

where e−βf is a constant equal to the ratio of biased and unbiased partition functions:

The potential of mean force (PMF) or relative free energy in wunbiased(ξ) is
then given as:

which means that the unbiased PMF is simply the difference between the PMF
from the biased simulation and the umbrella potential.
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A single umbrella potential as given in Eq. 7 can compensate for the energetic
cost associated with a transition barrier, but, at the same time, conformational
sampling far away from the barrier is limited because of the harmonic form.
In order to sample more broadly in ξ while still flattening the barrier, multiple
overlapping umbrella simulations can be carried out with different values of ξ0
(75). This approach also has the advantage that the exact height and location of
the barrier does not need to be known a priori. A series of simulations each with
different biasing functions Uumbrella,i(ξ) would result in piecewise PMFs wi(ξ) that
are each determined within the constant shift f in Eq. 12. If the PMFs overlap
in ξ, a combined PMF w(ξ) along the entire range of ξ can then be obtained by
manually aligning the individual PMFs at the overlap regions or, more elegantly,
with the weighted histogram analysis (WHAM) (76) or multi-state Bennett
acceptance ratio methods (77).

Alternatively, it also possible to apply an umbrella potential with a different
functional form, e.g. an inverted Gaussian centered at the barrier maximum
which would bias sampling towards the barrier region but not affect regions far
away from the barrier. The optimal biasing function would be the negative of the
biased free energy surface. The resulting effective energy function would then be
completely flat and the simulated motions on that surface would be barrierless
and entirely diffusive. This approach is taken in multi-canonical simulations (78).
One problem with this methodology is that the entire conformational landscape
is usually not known beforehand and some form of adaptive sampling is usually
required to build up the biasing function. Another problem is that a completely
flat energy surface is not necessarily desirable because random diffusion in
high-dimensional space can be less efficient than sampling on a sloped surface
with moderate kinetic barriers that guides sampling to a small subspace of the
configurational space as for example in protein folding (79, 80).

A variant of adaptive umbrella sampling is the so-called metadynamics (81)
method which is closely related to the earlier idea of conformational flooding (82).
In this method, small Gaussians are placed successively at locations previously
visited in a simulation thereby effectively raising the energy of an extensively
sampled minimum to the height of the surrounding barriers until barrier crossing
becomes feasible. Then the next minimum is filled up with Gaussian and so on
until all of the low-energy conformational states have been visited.

Closely related to the meta-dynamics approach is a method called accelerated
MD (83), which raises the energy of low-energy states irrespective of whether
those states have been visited previously or not instead of lowering the kinetic
barrier. This is accomplished by modifying the potential V(r) below a given
threshold E as follows:

where a is an adjustable parameter that determines the shape of the function at the
minima.
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Another related technique is steered MD (SMD) (84) where a force in a
certain direction is applied to overcome kinetic barriers. Either a constant-force
or a constant-velocity scheme is applied. SMD simulations are more physically
intuitive and constant-velocity simulations correspond directly to atomic force
microscopy experiments. However, in contrast to umbrella sampling simulations,
SMD simulations are non-equilibrium simulations thereby complicating the
extraction of thermodynamic quantities. It is possible, though, to calculate
thermodynamic quantities and in particular PMFs from an ensemble of
non-equilibrium trajectories (85) but convergence is often more challenging than
with umbrella sampling techniques.

Replica Exchange Simulations

Replica exchange simulations improve upon the idea of umbrella sampling
through the parallel coupling of multiple biased simulations (86). The coupling
provides an opportunity to exchange conformations between different biasing
conditions (or equivalently exchange conditions) at frequent intervals. A typical
replica exchange simulation involves N separate simulations, called replicas, in
each of which a different biasing potential is applied. For example, a harmonic
potential according to Eq. 7 may be applied with different values of ξ0. At fixed
intervals, typically on the order of 1 ps, the energies of neighboring replicas i and
j are compared and an exchange is accepted in an MC-like fashion according to
the probability:

where ΔUij = Ui(ξj) − Ui(ξi) and Ui(ξj) is the biasing potential with the value of
ξ0 for the j-th replica evaluated for the value of ξ at the i-th replica. This criteria
essentially tests to what extent the conformation in the i-th replica is representative
of the distribution under the biasing function of the j-th replica and vice versa.

Given sufficient overlap between neighboring replicas for exchanges to be
accepted frequently, multiple replicas then contribute to the sampling for a given
biasing potential thereby greatly improving convergence. Unbiased probability
distributions are obtained from replica exchange simulations in the same fashion
as from multiple sequential umbrella sampling runs.

The replica exchange scheme described so far is called Hamiltonian replica
exchange since it involves a modification of the Hamiltonian operator for each
replica. There are many variants of this scheme. E.g. it is possible to scale part of
the interaction potential in different replicas instead of adding a biasing potential
(87, 88). It is also possible to use temperature as a means for biasing simulations
(89). In temperature replica exchange simulations, each replica runs at a different
temperature with the lowest temperature often corresponding to the temperature
of interest. In temperature replica exchange simulations the criteria for accepting
exchanges becomes:
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where Ti and Tij are the temperatures and E(qi) and E(qj) are the potential energies
of adjacent replicas i and j.

The higher temperature replicas enhance the crossing of barriers in a
non-specific manner simply by providing extra kinetic energy. This scheme is
very attractive for studying previously uncharacterized systems since it does not
require the identification of a suitable reaction coordinate for a specific biasing
potential. As a result, temperature replica exchange simulations are widely
used and are in fact the first type of replica exchange simulations that were
developed. However, replica exchange simulations also have drawbacks. The
most serious limitation is that elevated temperatures do not only accelerate the
crossing of kinetic barriers but modify the entire free energy surface to favor
high entropy states. This is exemplified by replica exchange simulations of
proteins that will denature at high temperatures. Because the resulting unfolded
conformations are statistically irrelevant for native state dynamics, replicas above
the folding temperature essentially do not contribute anymore to the sampling
of low-temperature replicas after equilibrium has been reached thereby limiting
the effectiveness of the replica exchange scheme (90). Another limitation is that
fluctuations in the energy difference in Eq. 15 decrease with increasing system
sizes. As a result, densely spaced replicas are required to achieve sufficient
overlap in systems with many degrees of freedom such as simulations using
explicit solvent.

Multi-Scale Methods

Multi-scale methods aim at adapting the model resolution to the minimum
level of detail that is required to address a given question, thereby avoiding
unnecessarily detailed and computationally expensive models. Multi-scale
schemes may involve representations at different scales for different parts of
a given system, or low- and high-resolution representations may be alternated
dynamically (73, 91–94).

An example of a comprehensive multi-scale modeling approach is depicted
in Fig. 1. Here, a chemical reaction center is represented quantum mechanically,
surrounding areas are modeled classically in atomic detail, far away parts of the
molecular complex are modeled at a coarse-grained level, and the surrounding
solvent is modeled implicitly as a dielectric continuum. Such a model would
be well suited to study the reaction center in the context of the entire solvated
molecule. In contrast, this model would be less appropriate to investigate, for
example, conformational changes of the entire molecule in response to different
solvent conditions because neither the solute as a whole nor the solvent are
represented in sufficient detail.

170

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
00

8

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Figure 1. Multi-scale modeling scheme.

While a complete multi-scale model as shown in Fig. 1 poses technical
challenges and requires a careful design to be effective, simplified schemes can
be used more readily and are enjoying increasing popularity. One example is
given by QM/MM simulations. Another popular combination is the use of an
implicit representation of the environment in conjunction with all-atom models
of a given solute. Finally, coarse-grained models of the solute either with explicit
coarse-grained solvent or with implicit solvent are attractive for rapid sampling
of very large complexes or of smaller systems over very long time scales. While
such models often only provide qualitative insight, quantitative information can
be obtained by reconstructing all-atom models from representative coarse-grained
structures and re-evaluating those conformations with an all-atom energy function.
Implicit solvent models and coarse-graining methods are described in more detail
in the following.

Implicit Descriptions of Solvent Environments

Solvated molecular solutes often interact intimately with the surrounding
solvent environment. The essential role of solvent in prescribing the structure and
dynamics of biological macromolecules is well known (80, 95), but solute-solvent
interactions are equally important for many other types of solutes (96). It is
therefore critical that solute-solvent interactions are represented accurately in
molecular simulations (97). The canonical approach is to explicitly include
solvent molecules in periodically replicating systems (3). In order to provide a
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bulk-like environment and avoid periodicity artifacts it is usually necessary to
include at least three layers of solvent which translates into a significant number
of solvent molecules. As a result, in most simulations with explicit solvent more
computational time is spent on solvent-solvent interactions than on solute-solute
and solute-solvent interactions. The cost for calculating solvent interactions
becomes comparable to the cost for calculating solute interactions only for
very large, globular solutes. Therefore, the computational cost of a molecular
simulation can be reduced significantly with an implicit mean-field formalism
that depends only on the conformational state and properties of a given solute and
does not require any explicit solvent molecules. Of course, such formalism needs
to preserve a sufficient level of realism and needs to be computationally efficient
by itself since the advantage of an implicit solvent scheme would otherwise be
lost.

The typical approach is to estimate the solvation free energy and add that term
to the (vacuum) solute interaction potential to form an effective, implicit solvent
interaction potential:

The solvation free energy arises due to electrostatic and non-polar interactions
and often those contributions are estimated separately (98). Except for very
hydrophobic environments, the electrostatic contribution is by far the largest
contribution to the solvation free energy.

There are a number of different ways how the electrostatic solvation free
energy may be estimated. They range from relative crude but inexpensive
dielectric screening of electrostatic interactions (99–101) to empirical approaches
based on the solvent-accessible surface areas of different residues and atom types
(102) and physically more rigorous models that rely on a dielectric continuum
(103, 104) or fluctuating dipole approximation of the solvent environment (105).
Implicit solvent models based on dielectric continuum theory are most widely
used today and will be described in more detail in the following.

The basic idea of dielectric continuum models is to maintain a fully atomistic
representation of the solute and model the environment as a dielectric medium
with a given dielectric function ε to reflect the polarizability of the solvent.
Because the dielectric response is nearly constant over the frequency range
corresponding to molecular fluctuations, only the static, constant contribution to
the dielectric function is considered. Such a model is rigorously described by the
Poisson equation:

where the electrostatic potential throughout space is related to an explicit
charge distribution ρ(r) and the distribution of the dielectric constant. For a solute
in aqueous solvent, ε(r) would typically have a value of 1 inside the solute cavity
where the explicit charges are present and a value of 80 everywhere else. A higher
interior dielectric constant is sometimes used when structures are not thermalized
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appropriately as in minimized structures or average structures from experiments
(106).

Eq. 17 can be solved for the electrostatic potential using grid-based, iterative
finite difference techniques (107, 108). The electrostatic solvation free energy can
then be readily calculated from the electrostatic potential. However, this route
is computationally not very attractive because convergence of finite difference
methods is poor and many iterations and fine grids are required to obtain accurate
results (109, 110). In practice, the much less costly Generalized Born (GB)
approximation is therefore used instead (111, 112):

where qi are partial atomic charges of the solute from a given force field, rij are
pair-wise atomic distances, F is an adjustable parameter, ε is the dielectric constant
of the environment, and the generalized Born radii αi are calculated essentially as
a function of the solute density surrounding a given charge site i.

The non-polar contribution to the free energy of solvation consists of van der
Waals solute-solvent interactions and the cost associated with cavity formation.
The cost of cavity formation is approximately proportional to the solvent
accessible surface area or the solvent excluded volume (113–115). Formalisms
for implicit van der Waals interactions have also been proposed (116), but often
the entire non-polar contribution to the solvation free energy is combined in a
single term.

Implicit solvent models based on the GB formalism and a solvent-accessible
surface area based non-polar term can be surprisingly effective. There are now
numerous example where implicit solvent simulations produced essentially
equivalent dynamics to fully explicit solvent simulations. However, it is clear
that implicit solvent treatments are not appropriate for all types of applications,
especially when very specific solvent interactions are at play. In these cases, fully
explicit solvent or hybrid implicit/explicit solvent schemes cannot be avoided.

Implicit solvent models can be extended to low-dielectric environments (117)
and heterogeneous environments, such as membranes. Membrane environments
can be represented as layered implicit solvents with different dielectric constants
in the membrane interior (118, 119) or different empirical solvation contributions
(120).

Coarse-Graining

In coarse-grained models, the solute itself is approximated by combining
several atomic interactions sites into a coarse-grained particle. A new interaction
potential is then designed at the coarse-grained level. Coarse-grained models
can be explored with either MD or MC simulations. There are a great variety of
such models ranging from very low-resolution models where a coarse-grained
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particle may correspond to an entire molecule or even multiple closely interacting
molecules to models at near-atomic resolution where only some atoms (e.g. C-H
groups) are combined while others remain in full atomic detail. The level of
coarse-graining that is chosen in practice depends on the best comprise between
computational speed and model accuracy for a given application.

Except for the highest-resolution models, coarse-grained interaction
potentials consist primarily of empirical terms which limit transferability of such
models. Coarse-grained interaction potentials may either apply generally to a
certain type of molecules, thereby conferring some degree of transferability, or
they may encode specific interactions of a given system. An example of a more
general coarse-grained interaction potential is the well-studied H-P model of
proteins which consists of a single particle per residue (121). The coarse-grained
particles are either hydrophobic (H) or polar (P) based on the amino acid that
they represent. A contact-based potential is then defined for H-H, H-P, and P-P
interactions. Such models have been used extensively for fundamental studies of
protein folding (122). More sophisticated variants have been used in the context
of protein structure prediction (123, 124). Recently, new models have been
proposed that rely less on empirical terms and thereby improve transferability
(125–127). This latest generation of coarse-grained models will likely be more
widely applicable and lead to broader use of coarse-grained models.

System-specific coarse-grained models directly reflect knowledge about
intra-molecular interactions from structural data, all-atom simulations, or other
experiments. Such models generally lack transferability to other systems and
they may have limited predictive abilities beyond what is already known about a
given system. Nevertheless such models have become popular recently because
they offer the most direct route to very long time-scale simulations of large
systems that are otherwise intractable (128). A common approach for designing
such models involves interaction sites that are connected with harmonic springs
to reflect either bonded or non-bonded interactions. In the simplest form, the
connectivity is determined from structural data and a common spring constant is
used for all interactions (129). More sophisticated schemes may obtain pairwise
or higher-order interaction potentials from molecular dynamics simulations
through Boltzmann inversion (128) or force matching (130).

A hybrid between the first and second types is the so-called Go model which
combines general interaction parameters with a term that strongly biases towards
native-like intramolecular contact formation (131). Go-models are used widely in
the study of protein folding since they practically guarantee that the native state is
reached in folding simulations (132).

Summary

Molecular simulations have come a long way since the first simulations
were published many decades ago. It is becoming possible to routinely reach
microseconds even for relatively large systems and we will likely see the first
millisecond simulations in the near future. Furthermore, the current generation of
interaction potentials is much more realistic than earlier versions. Nevertheless,
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the application of simulations to real problems remains challenging. There is
still room for improving the accuracy of fixed charge force fields and the routine
inclusion of polarizability in simulations of non-trivial systems is only just
becoming reality. Another issue is that despite ever increasing computer power
simulations are still often too short to achieve full convergence. Much progress
has been made in the development of enhanced sampling protocols to accelerate
the crossing of barriers, but even those methods are often not sufficient to fully
sample the relevant dynamics in a complex molecular system. A promising
direction is the use of reduced representations either for the solvent or solute part
of a given molecular system. Reduced representations are becoming standard
tools for meeting the desire to simulate ever longer time scales and larger system
sizes.
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Chapter 9

Quantum Mechanical Modeling of Sugar
Thermochemistry

Joshua Engelkemier1 and Theresa L. Windus1,2,*

1Department of Chemistry, Iowa State University, Ames, IA 50011
2Ames Laboratory, Ames, IA 50011

*Theresa@fi.ameslab.gov

The recently developed homodesmotic hierarchy for
hydrocarbons is extended to include oxygen so that accurate
thermochemical quantities for sugars and sugar polymers may
be computed with relatively small computational cost. In
particular, the method will allow for the determination of heats
of formation, which can be used to determine bond strengths
important in the decomposition of sugars in, for example, the
pyrolysis of biomass. This chapter includes a brief review
of the current methodology for calculating thermodynamic
properties using electronic structure methods and a description
of the proposed extensions. Preliminary results using the lowest
members of the hierarchy give a standard heat of formation
value of β-D-glucopyranose-gg to be approximately 250 to 260
kcal/mol. These results are promising, and future work will
include the calculation of highly accurate building blocks on
which this method is based.

Many reports describe the multiple challenges associated with the
composition of biomass to useful fuels (1). Of critical importance to the
conversion is understanding the decomposition of lignocellulose whose main
components – cellulose, hemicellulose and lignin – are difficult to break into
constituent sugar components because of the polymeric nature of the material
that acts to “harden” the material and prevent its decomposition. Even when the
sugars are released from the biomass, there is still the challenge of converting
the sugar to fuel (primarily ethanol and biodiesel) in an energetically and

© 2010 American Chemical Society
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environmentally conservative manner (i.e., using the least amount of energy to
accomplish the conversion in a way that will not produce more environmental
issues). To understand the decomposition of the source materials requires a
detailed understanding of the thermodynamics and kinetics of each of the building
blocks (sugars and hydrocarbons) that the source material is composed of.
Additionally, the energy involved in bond breaking during decomposition must
be understood to predict product formation and to “disrupt” the current process
in such a way as to produce more of the desired products. All of these issues
point to the need for accurate thermochemistry for these quite large systems.
Unfortunately, there is a distinct lack of such information for these systems from
both experimental and computational sources. While some specific species have
been examined (2), to the best of our knowledge, a systematic examination of the
sugars and their decomposition pathways has not been undertaken. Because of
the computationally intense nature of many of the current methods, this is not a
trivial undertaking.

We propose an extension to the recent hydrocarbon homodesmotic hierarchy
(3) to include oxygen. While our motivation is the examination of sugars
and products of biomass conversion, the proposed extensions apply to many
oxygen-containing species. The next section discusses the two main quantum
mechanical methods, composite and balanced reactions, for obtaining accurate
thermochemical quantities. It includes a detailed description of the homodesmotic
hierarchy that extends to include oxygen important in sugars, which is discussed
in the following section. The section after that reviews the application of the
hierarchy to obtain the heat of formation of β-D-glucopyranose-gg. Finally,
conclusions are given.

Quantum Mechanical Methodology

The chemical community has long been concerned with calculating accurate
thermochemical quantities such as heats of formation, ionization energies, proton
affinities, and dissociation energies because these are the basic building blocks
for understanding the stability of reactants and products and their reactions. In
addition, these quantities are of interest to experimentalists and can be directly
compared to experimental values when they are available. Therefore, much effort
has been put into evaluating these quantities to obtain “chemical accuracy.” For
example, heats of formation are one of the most fundamental quantities because
many other properties (such as bond dissociation energies) can be derived from
them. Chemical accuracy for this property usually refers to beingwithin 1 kcal/mol
of the actual experimental value. Unfortunately, very accurate experimental values
are not always available, making benchmarking methods a challenge. However,
using available experimental values allowsthe theoretical community to develop
several different methodologies that can roughly be separated into two different
categories: additive or composite methods and balanced equation methods. Both
of these methods and the common theories in each category are described below.
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Composite Methods

Calculating molecular energies is the first step in determining heats of
formation to chemical accuracy and requires extremely accurate calculations,
usually at great computational expense. These molecular energies can then
be used with atomic information to determine the overall heats of formation.
However, for anything other than very small systems, calculating the molecular
energy accurately is challenging. To overcome this, multiple methods have been
determined to either add together information of many lower-level computations
or to extrapolate to a molecular energy that includes both complete basis sets
and high levels of electron correlation. Because the idea is to approximate the
results of a very high theory level with a lower level, the pieces in the composite
method should be affordable on the current generation of computer architectures.
However, computer architectures are continuing to advance, so we can either use
a higher level of theory for a smaller molecule or apply the lower levels of theory
with a larger molecule. In general, researchers prefer the latter approach because
the larger molecular systems usually do not have very accurate experimental
thermochemical data available. However, as will be described below, there is still
much activity around using higher levels of theory to obtain even sub-chemical
accuracy (~0.1 kcal/mol error from the correct value). Because several reviews
are available (4), only a brief description of the most-used methods are described
here.

Perhaps the most well-known composite method is the “Gaussian” models
of Curtiss and coworkers (5). The fundamental versions of these are denoted as
Gn, where n=1-4. Because several of the other composition methods use similar
concepts, and because the method is often used, an example using G2 theory (5c)
is described here. In G2, the first step is to compute a geometry at the MP2(FU)/6-
31G(d) level (6, 7), where FU means using all of the electrons in the system (i.e.,
not using a frozen core). This geometry is used for all of the subsequent steps in
the calculation. The second step is to calculate an energy at the baseline, higher
level calculation, which in this case is MP4/6-311G(d,p) – denoted E[MP4/6-
311G(d,p)]. Next, a correction is made for diffuse functions, which are especially
important for anions and molecules with extensive wavefunctions, ΔE(+), and is
given by:

The fourth step is the addition of extra polarization functions on heavy atoms (all
but hydrogen), ΔE(2df):

The fifth step is a correction for an additional d function on heavy elements and a
p function on hydrogen, Δ:
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Up to this point, all of the corrections have improved the basis set limits. The
next one, the sixth step, improves the electron correlation from MP4 to QCI (8),
ΔE(QCI):

The seventh step is the addition of a higher level correction (HLC) that takes
into account other basis set errors:

where nβ and nα are the number of beta and alpha electrons in the valence on the
molecule, respectively. The first coefficient (-0.00481) was optimized to give a
zero mean deviation of the calculated atomization energies of 55 molecules from
well-known experimental values. The second coefficient (-0.00019) is a correction
in the energy associated with the hydrogen atom.

For the eighth step, the zero-point energy must be included to get the total
energy, E0. Because there is a specific scaling relationship with Hartree-Fock
calculations (9), the frequencies from a HF/6-31G(d) calculation are scaled by
0.893, E(ZPE).

Finally, the total energy is obtained by adding equations (1)−(5) and E(ZPE)
to the base MP4/6-311G(d,p) energy:

Once the calculated molecular energy is available, it can be combined with
additional information to calculate important thermodynamic information. Using
a test set (denoted the G2 test set) of 125 molecular systems with accurate
experimental data for dissociation energies, ionization energies, electron affinities,
and proton affinities developed by the G2 authors, the G2 method was able
to obtain a mean average deviation of 1.21 kcal/mol compared to experiment
– very close to the goal of chemical accuracy. In fact, one of the important
contributions from the Gn work is the development of a series of test sets where
accurate experimental information is available and can be used for multiple
thermodynamic calculational methodologies (10). Subsequent to G2, various
improvements were made to the composite method. The most recent version, G4
(5m), uses the latest G3/05 test set (11) containing 454 experimental energies. It
delivers an average absolute deviation of 0.83 kcal/mol.

In similar research by DeYonker, Cundari, Wilson and co-workers, the
correlation-consistent composite approach (ccCA) (12) uses the G3B method (13)
as a foundation for additional changes to improve the overall accuracy. The G3B
method is similar to G2, except the B3LYP (14) density functional method is used
to optimize geometries and determine the zero-point energies. Compared to the
G3B method, one of the main differences is that the Pople-style basis sets, such as
6-311G(d,p), are replaced with the correlation-consistent basis set of Dunning and
co-workers (15). Because these basis sets have many well-known extrapolations
to the complete basis set limit (16), the authors used several of them to obtain
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accurate one-electron energies at the MP2 theory level. Based on their results, the
extrapolations developed by Peterson and co-workers (16b) and by Wilson and
Dunning (16e) gave the best results for the overall thermochemical data. With
this extrapolation in place, and after research by others revealed that the triples
excitations in the MP4 formalism can cause large electron correlation errors (17),
theMP2 theory level using the extrapolated basis results was chosen as the starting
single-point level instead of the MP4 in G3B. In addition, the ccCA includes
a correction for core-valence correlation in the basis and does not include the
HLC. As with the Gn methods, higher levels of electron correlation are included
either through QCISD(T) or the coupled-cluster method with singles, doubles,
and approximate triples, CCSD(T), with the latter generally being preferred. In
later versions of the method, relativistic effects with the Douglas-Kroll-Hess
Hamiltonian (18) and first-order spin-orbit coupling were added. For elements in
the second row and below, a correction for tight core functions was also added.
Using the G3/99 test set, the ccCA method obtains a 0.96 kcal/mol mean absolute
deviation, essentially the accuracy of the G3X model, while avoiding the MP4
calculation as well as involving no empirical parameters.

While having the same goals of decreasing the overall errors of the
complete energy, Petersson and co-workers take a different approach toward this
extrapolation in their complete basis set CBS-4, CBS-Q, and CBS-QCI/APNO
methods (19). These methods are similar to the G2 method in both approach and
cost. The major difference is that the models use nonlinear pair natural orbital
extrapolations to the complete basis set limit. However, nonlinear extrapolations
will not produce calculations that are size consistent unless the corrections are
applied to localized quantities. Size consistency means that one calculation
including non-interacting molecules (i.e., molecules at infinity from one another)
is the same as the sum of separate energy calculations on each molecule. This,
of course, is an important property for thermochemical accuracy. In the CBS
method, the Pipek and Mezey localization method is used to localize populations
to correct for this issue (20). In addition, these methods also have an empirical
correction that is specific for each model, but it is based on overlaps to obtain
a size-consistent generalization of the correction used in Gn theories. The root
mean square errors for the 125 chemical energy differences of the G2 test set are
2.5, 1.3, and 0.7 kcal/mol for CBS-4, CBS-Q, and CBS-QCI/APNO, respectively.

While the methods described above are readily applied to moderately sized
molecular systems, some recent computationally intensive composite methods aim
for less than 0.25 kcal/mol (or ~ 1 kJ/mol) accuracy and are currently only available
for the smallest of molecules. These “calibration accuracy” methods generally fall
into two different categories: 1) theWeizmann-n (Wn) (21) methods ofMartin and
co-workers, and 2) the “high accuracy extrapolated ab initio thermochemistry,”
HEAT (22), method developed by a multi-national effort. Both of these methods
take advantage of the Active Thermochemical Tables (ATcT) (23), which is a
novel source of highly accurate thermochemical data from the best experimental
and theoretical data available. Additionally, it includes error bar analysis. In the
ATcT approach, thermodynamic networks are used to solve for the thermodynamic
quantities of interest (e.g., heats of formation). This approach also determines
species that are not well known. In addition, the error analysis is propagated
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through the system with smaller weights in the network to less well characterized
data (i.e., trying to minimize the error in each of the individual thermodynamic
quantities). This provides a highly accurate database of information for which to
compare theoretical results.

In the Wn methods, all elements of the Hamiltonian that can contribute at
the kJ/mol level are included in the overall scheme, basis set convergence is
determined at each level of theory used (i.e. SCF, CCSD(T)), the smallest basis set
possible (still quite large) is used to obtain the target accuracy, and no parameters
from fits to experimental data are used. Concerning the last point, several of the
Wn methods use a parameter to improve the basis set extrapolations. In addition
to the extensive basis set extrapolation and extrapolations for higher-order
operators in the coupled cluster series, each level in the Wn hierarchy includes
scalar relativistic effects through one-electron Darwin and mass-velocity terms.

The W4 version includes an estimation of the and terms in the coupled
cluster operator, inner core correlation, and atomic spin-orbit coupling, as well
as the diagonal Born-Oppenheimer correction. For a series of 30 molecules, an
average accuracy of 0.1 kcal/mol in atomization energies are obtained, compared
to those of the ATcT.

The HEAT method has many similarities to the Wn method (some developed
before the Wn methods and some developed after). The first significant difference
is that the geometries and harmonic zero-point energies in the HEAT method
are determined at a very high CCSD(T)/cc-pVQZ level of theory correlating all
electrons in the molecule (including the core). The second major difference is
that the corrections between the triple and quadruple contributions for the coupled
cluster expansion are calculated exactly (i.e., not by approximation) using the
double zeta correlation consistent basis set extrapolations. Other terms are similar
to those in the Wn methods. The focus of this work is to obtain highly accurate
total energies and not atomization energies. While including this data, the research
group specifically chose to examine reactions with respect to the elements in their
standard states. However, some modifications to the scheme are required because
elements such as graphite are prohibitive at this computational level. In this case,
the authors chose to use CO2 as a “substitute” and used appropriate reactions.
For the 31 sample molecules chosen from the ATcT, all of the reported heats of
formation, with the exception of one, fall within 0.5 kJ/mol of the value given by
ATcT. The exception, H2O2, fell within 1.0 kJ/mol of the expected value.

In other research, the “focal point” approach (24) of Wheeler and co-workers
provides a general strategy for obtaining very accurate thermochemical
information using correlation-consistent basis sets to obtain systematic dual one-
and n-particle expansions and includes electron correlation through second-order
perturbation and coupled-cluster methods. Combining this method with additional
corrections for the anharmonic zero-point energy, the diagonal Born-Oppenheimer
contribution, and scalar relativistic effects, these authors have obtained accurate
thermochemical information for key small intermediates in soot formation.

In all of the methods described above, there is an assumption that a single
reference is sufficient for describing the molecular system. In many molecular
systems, this assumption is appropriate. However, it is clear that there are systems
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where multiple references are required (25), such as those that include electronic
excited states or complex bond formation or dissociation. Sølling and co-workers
have developed amulti-reference equivalent to theG2 andG3methods to deal with
these types of systems (26). In addition, very accurate potentials and vibrational
levels (a true challenge!) have been obtained for several diatomic and triatomic
systems by Bytautus and Ruedenberg through a novel configuration interaction
extrapolation method (27).

Balanced Equations/Homodesmotic Reactions

As described above, the composite methods have the goal of obtaining
very accurate overall energies that can then be used to compute thermodynamic
quantities. The next type of methods rely heavily on cancellation of error in
reaction calculations using several different types of reaction definitions. The
advantage of these methods is that relatively low levels of theory can be used to
obtain accurate thermochemical data, even on large chemical systems. Again,
researchers have introduced several different methodologies. This chapter
describes only the commonly used methods.

Pople et al. developed the first electronic-structure-based method, and it
defines an isogyric reaction as one that leaves the number of unpaired electron
spins unchanged (28). Dissociation energies for simple hydrides were developed
using a hydrogen molecule (e.g., BH2 → BH + H or BH3 + H → BH2 + H2).
Combining these results with the exact dissociation energy of H2 gives the desired
result. Researchers used these types of reactions to determine singlet-triplet
separations, ionization energies, and enthalpies of formation for a series of small
molecules where experimental data was available. Using MP4 methods with
small basis sets to calculate the total energies, the authors obtained ionization
energies within 0.1 eV ≈ 2.3 kcal/mol for most cases.

Since those initial isogyric schemes, there have been many additional
definitions of balanced equations, including homodesmotic (equal bonds) (29),
isodesmic (28a), and hyperhomodesmotic (30), to name only a few. All of
them depend on balancing different parts of the chemical equation – bond types,
hybridization of the atoms, etc. All of these methods rely on having very accurate
heats of formation available for a set of relatively small molecules or “standard”
molecules for which the reactions can be built. Therefore, the composition
methods are of critical importance in this effort as well. While several of these
balanced equation methods are fairly well defined, xtensive confusion in the
literature exists between the different methods.

Wheeler and colleagues clearly define a standard homodesmotic hierarchy
for unstrained hydrocarbons (3) to clarify the balanced reaction types. In this
work, the authors also describe the relationship of their work to other methods in
the literature. Their scheme contains five progressive classes of homodesmotic
reactions, in which the higher orders are systematically more rigorously balanced,
yet also more expensive, than the classes below them. Indeed, what was a product
in the previous class, becomes a reactant in the next highest one. (The reactions
are formed in such a manner that the species of interest, usually larger than
any of the standard species, is combined with small reactants and broken down
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into substituents that are larger than the reactants, but smaller than the original
molecule.) The following list paraphrases their definitions:

RC1 (Isogyric): the number of total electron pairs is balanced.
RC2 (Isodesmic): (a) the number of total electron pairs and (b) the number of

carbon-carbon single, double, and triple bonds are balanced.
RC3 (Hypohomodesmotic): (a) the number of carbon atoms in sp3, sp2, and

sp hybridization and (b) the number of carbon atoms with zero, one, two,
or three attached hydrogens are balanced.

RC4 (Homodesmotic): (a) the number of each combination of two, bonded,
separately hybridization-specific carbon atoms and (b) the number of sp3,
sp2, and sp hybridized carbon atoms with zero, one, two, or three attached
hydrogens are balanced.

RC5 (Hyperhomodesmotic): (a) the number of each combination of two,
bonded carbons each with zero, one, two, or three attached hydrogens
and connected by a single, double, or triple bond and (b) the number
of sp3, sp2, and sp carbon atoms with zero, one, two, or three attached
hydrogens are balanced.

Using these definitions, they were also able to define all possible elemental
reactants and products necessary to satisfy the requirements of each reaction
class for any hydrocarbon. The visual interpretation of this system is especially
helpful in understanding the inherent logic. The hypohomodesmotic definition
can be thought of as breaking the molecule into smaller products based on each
non-terminal carbon center. For example, a carbon attached to three carbons
by two single bonds and a double bond is represented on the product side by
2-methylpropene. To counter-balance the extra terminal sp3 and sp2 carbons
(-CH3, =CH2) now in the products, ethane and ethylene must be added to the
reactants. The homodesmotic definition is identical except in cases when the
study molecule has a conjugated pi system. RC4 preserves conjugating pairs of pi
bonds in the products, which Wheeler and colleagues found to produce significant
improvement over RC3 calculations. The hyperhomodesmotic definition is
analogous to the hypohomodesmotic one, but it involves two non-terminal carbon
atoms, the bond between them, and then the remaining, truncated bonds of each to
any other carbons as in RC3. Thus, RC4 behaves like RC5, but only in situations
with conjugation. As Wheeler and colleagues mentioned in their publication,
the hierarchy could theoretically be expanded even further so that each product
molecule contained the bonds of each three atoms and so forth, until the reactants
and products were exactly identical. However, in this extreme case, the technique
ceases to be useful.

Of particular interest in this work are the results of calculations of 38
hydrocarbons containing five or six carbon atoms. The RC4 and RC5 reactions
give bond separation enthalpies with errors consistently less than 0.4 kcal/mol
using several levels of theory including HF, DFT, MP2, and CCSD(T). Even RC2
and RC3 results are consistently below 8 kcal/mol and 2 kcal/mol, respectively.
These results are promising in that highly expensive calculations can be avoided
except in computing the constituent standard molecules, which are small in

186

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
3,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

00
9

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



comparison to the systems of interest. Enthalpies of formation for large polyynes
were also computed (C10H2-C26H2) using DFT, showing the use of these methods
to obtain accurate values for large molecular systems.

This chapter adapts these standards to include oxygen-based functional
groups, namely alcohols, ethers, ketones, and the combinations of them. Because
oxygen is the most common heteroatom in organic molecules and sugars, the
usefulness of homodesmotic reactions is greatly enhanced by the capability to
include oxygen. The current research was tested with β-D-glucopyranose-gg
(Figure 1).

Figure 1. β-D-glucopyranose-gg

Extension for Sugars

Just as the hydrocarbon homodesmotic hierarchy is self-consistent in that the
higher classes’ parameters are expansions, not revisions, of the lower ones, so too
must be a hierarchy that includes oxygen. Because carbon and oxygen are large
atoms compared to hydrogen, it is reasonable to give oxygen equal priority to
carbon, not merely as a substituent of it. We show that any sp3 or sp2 carbon atom
from Wheeler and coworker’s elemental molecules may be substituted by a sp3 or
sp2 oxygen atom, respectively.

Oxygen-oxygen bonding was not considered at this time because oxygen
significantly differs from carbon in its ability to form long chains of bonds.
However, oxygen can still be part of a primarily carbon chain in the form of
ethers. The lack of side branching in ethers structurally differentiates them from
interstitial carbons. Likewise, an alcohol, (primary, secondary, or tertiary) is
analogous to a terminal carbon, whether it is bonded to a primary, secondary, or
tertiary carbon. They are both heavy atoms connected to the appropriate number
of hydrogens and just one carbon.

Concerning the sp2 hybridized functionalities, a ketone is structurally like an
alkene except with an oxygen as one of the pi-bonding pairs, rather than a carbon.
A notable difference in this situation is that the ketone is necessarily terminal,
whereas the alkene may be in the middle of a carbon chain. The ketone may,
however, still be involved in conjugation. Oxygens are rarely, if ever, species?
hybridized at equilibrium conditions, so there is no suitable comparison with
alkynes.

Substitution of a carbon atom with a similarly hybridized oxygen atom does
not significantly change the molecule’s basic form, except when it would cause
fragmentation as noted above. Therefore, the patterns that Wheeler and colleagues
have already established can be modified by this principle to include oxygen. The
adapted definitions are:
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RC1: the number of total electron pairs is balanced.
RC2: (a) the number of total electron pairs and (b1) the number of carbon-

carbon single, double, and triple bonds and (b2) the number of oxygen-
carbon single and double bonds are balanced.

RC3: (a1) the number of carbon atoms in sp3, sp2, and sp hybridization and
(a2) the number of oxygen atoms in sp3 and sp2 hybridization and (b1) the
number of carbon atoms with zero, one, two, or three attached hydrogens
and (b2) the number of oxygen atoms with zero or one attached hydrogen
are balanced.

RC4: (a) the number of each combination of two, bonded, separately
hybridization-specific carbon atom and carbon-or-oxygen atom pairs
and (b1) the number of sp3, sp2, and sp hybridized carbon atoms with
zero, one, two, or three attached hydrogens and (b2) the number of sp3
and sp2 hybridized oxygen atoms with zero or one attached hydrogen are
balanced.

RC5: (a) the number of each combination of two, bonded carbon atom and
carbon-or-oxygen atom pair each with zero, one, two, or three attached
hydrogens and connected by a single, double, or triple bond and (b1) the
number of sp3, sp2, and sp hybridized carbon atoms with zero, one, two,
or three attached hydrogens and (b2) the number of sp3 and sp2 hybridized
oxygen atoms with zero or one attached hydrogen are balanced.

Figure 2 includes a chart of all possible elemental reactants and products
of this redefined homodesmotic hierarchy that are in addition to the purely
hydrocarbon sets proposed by Wheeler and colleagues.

Obviously, there are many more elemental pieces in the oxygen-inclusive
homodesmotic hierarchy. There are about 150 in all, more than 100 of which
are RC5-only. Carboxylic acids first appear as RC3 products, but esters only
manifest in a few RC5 products. Many of these theoretical combinations
seem highly unstable, which helps explain why experimental data is often
scarce. Some molecules that look absurd, however, may seem more reasonable
when reassembled into the study molecule. Gem polyols, for example, could
represent one or more ether linkages after being broken down according to the
requirements of the reaction class. Even so, the sheer number of possibilities,
already ignoring stereochemistry, makes the task of finding suitably accurate
enthalpies of formation for all the elements quite daunting. It’s useful to note
here that this scheme does not include radical species that are certainly of interest
in the decomposition of sugars (especially in pyrolysis). This deficiency will be
addressed in future work.
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Figure 2. Schematics of the additional reactants and products needed at each
level of the hierarchy for oxygen containing species.

Initial Results

Wheeler and co-workers showed that even density functional methods with a
modest basis set level can be used to give excellent results, especially for levels
RC3 and above. β-D-glucopyranose-gg, and all of the elemental reactants and
products needed to satisfy the five classes of the hierarchy, were prepared using the
graphical user interface Ecce (31) and energetically optimized by NWChem (32).
We used restricted density functional theory (B3LYP) and TZVP DFT orbitals
without coulomb or exchange fitting. The resulting balanced reactions, (7) through
(10), are given below:
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The zero-point corrected total energy values are used to calculate the enthalpy
of each reaction according to the general equation:

Standard enthalpy of formation values (33) were then used to calculate the
enthalpy of formation of the study molecule, β-glucopyranose-gg, for reactions
(7) and (8) according to the following equation:

At this time, accurate values for the standard enthalpies of formation of all
the elemental molecules for reactions (9) and (10) are unavailable. We are in the
process of determining accurate enthalpies of formation for these species using the
composite methods described earlier.
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Table 1. Thermodynamic data from computation and literature

Total Energy
+ ZPVE (Eh)

ΔfH°(g)
(kJ/mol) (33)

ΔfH°(g)
(Eh)

β-D-glucopyranose
gauche gauche -687.227422055

Hydrogen -1.1691918625 0 0

Methane -40.4913470200 -74.6 -0.02841

Water -76.4379808374 -241.8 -0.092097

Ethane -79.7856244897 -84.0 -0.03199

Methanol -115.717518491 -201.0 -0.076557

Table 2. Derived thermodynamic data from calculation

ΔErxn (Eh) ΔfH°(g) (Eh)
ΔfH°(g)

(kcal/mol)

RC1 -0.318242739 -0.4048 -254.0

RC2 -0.119468227 -0.4107 -257.7

The necessary information for reactions (7) and (8) are given in Table 1. Using
this data and equations (11) and (12), the reaction energy and the heats of formation
can be calculated as in Table 2.

It is also worth noting that the RC1 and RC2 values from Table 2 for the
standard enthalpy of formation of β-D-glucopyranose-gg are reasonably in
agreement with each other. The reaction energy approaches zero going up the
hierarchy, which makes sense because the difference between reactants and
products is also decreasing.

Conclusions

In this work, we presented an extension to the hydrocarbon hierarchy
of homodesmotic reactions developed by Wheeler and co-workers to include
oxygen. More than 150 new elements need to have accurate heats of formation
available before each hierarchical level can be fully exploited. Obviously, much
work remains to be done. Neither our research nor Wheelers took stereochemical
effects, such as rotamers of butane-2,3-dione (one of the products of the RC5
reaction for β-D-glucopyranose-gg), into consideration. This is problematic
because preliminary DFT calculations indicate the difference can be quite
significant – in excess of 1 kcal/mol. To verify the soundness of the adapted
homodesmotic scheme presented here, more calculations at higher levels of
theory need to be performed, as well as comparisons with experimental data. In
addition, incorporating this data into an ATcT scheme would improve the overall
accuracy of the developed information. If the current scheme is successful, room
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exists for the hierarchy to expand, to include radicals and more heteroatoms, such
as nitrogen.

It is too early to determine if the theories presented here are successful. As
noted above, there are many barriers to implementing this technique in a practical
manner; but the possibilities are great, and the early results are promising. Even
with the crude RC1 and RC2 methods, general agreement between the two gave
the standard heat of formation value of β-D-glucopyranose-gg to be approximately
250 to 260 kcal/mol. This is not precise enough to use in experiment, but it
is hopeful that RC3, RC4, and RC5 will provide even better results. It will be
especially interesting to see if RC5 is dramatically better than RC4, because it has
the capability to preserve more complex oxygen functional groups, such as esters.

In particular, however, a relatively low level of theory is required to examine
large molecular systems such as the sugars. Using the obtained heats of formation
aquired through new extensions to the homodesmotic hierarchy, accurate
bond dissociation energies and other critical thermochemical data may help us
understand the processes involved in the decomposition of sugars and biomass.

Acknowledgments

Work at the Ames Laboratory was supported by the Department of
Energy Office of Biological and Environmental Research (BER) and Office
of Advanced Scientific Computing Research (ASCR) divisions as part of the
Scientific Discovery through Advanced Computing (SciDAC) under Contract
No. DE-AC02-07CH11358. In addition, the authors thank Ames Laboratory and
Iowa State University for the computing resources used in this work.

References

1. For example (a) National Biofuels Action Plan. Available at http://
www1.eere.energy.gov/biomass/pdfs/nbap.pdf. (b) U.S. Economic Impact
of Advanced Biofuels Production: Perspectives to 2030. Available at
http://bio.org/ind/EconomicImpactAdvancedBiofuels.pdf

2. (a) Huynh, L. K.; Violi, A. J. Org. Chem. 2008, 73, 94−101. (b) El-Nahas,
A. M.; Navaroo, M. V.; Simmie, J. M.; Bozzelli, J. W.; Curran, H. J.; Dooley,
S.; Metcalfe, W. J. Phys. Chem. A 2007, 111, 3727−3739. (c) Tewari, Y. B.;
Lang, B. E.; Decker, S. R.; Goldberg, R. N. J. Chem. Thermodyn., 2008, 40,
1517−1526.

3. Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem.
Soc. 2009, 131, 2547–2560.

4. (a) Martin, J. M. L. Annual Reports in Computational Chemistry; Elsevier:
New York, NY, 2005; Vol. 1, pp 31–43. (b)QuantumMechanical Prediction
of Thermochemical Data; Cioslowski, J.; Kluwer: Dordrecht, 2001.

5. See for instance (a) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari,
K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622−5629. (b) Curtiss, L. A.;
Jones, J.; Trucks, G.W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990,
93, 2537−2545. (c) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople,

196

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
3,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

00
9

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



J. A. J. Chem. Phys. 1991, 94, 7221−7230. (d) Curtiss, L. A.; Carpenter,
J. E.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1992, 96, 9030−9034.
(e) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993,
98, 1293−1298. (f) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem.
Phys. 1995, 103, 4192−4200. (g) Curtiss, L. A.; McGrath, M. P.; Blaudeau,
J.-P.; Davis, N. E.; Binning, R. J. Chem. Phys. 1995, 103, 6104−6113. (h)
Curtiss, L. A.; Redfern, P. C.; Smith, B. J.; Radom, L. J. Chem. Phys. 1996,
104, 5148−5152. (i) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople,
J. A. J. Chem. Phys. 1997, 106, 1063−1079. (j) Blaudeau, J.-P.; McGrath,
M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016−5021. (k)
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.
J. Chem. Phys. 1998, 109, 7764−7776. (l) Curtiss, L. A.; Redfern, P. C.;
Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108−117. (m)
Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126,
084108.

6. Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618–622.
7. (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980,

72, 650−654. (b) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72,
5639−5648. (c) Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L.
J. Chem. Phys. 1997, 107, 5016−5021. (d) Curtiss, L. A.; McGrath, M. P.;
Blandeau, J.-P.; Davis, N. E.; Binning, Jr. R. C. ; Radom, L. J. Chem. Phys.
1995, 103, 6104−6113. (e) Glukhovstev, M. N.; Pross, A.; McGrath, M. P.;
Radom, L. J. Chem. Phys. 1995, 103, 1878−1885.

8. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87,
5968–5978.

9. Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.;
Frisch, M. J.; Whiteside, R. A.; Hour, R. F.; Hehre, W. J. Int. J. Quantum
Chem. Symp. 1981, 15, 269–274.

10. Available on-line at http://www.cse.anl.gov/Catalysis_and_Energy_
Conversion/Computational_Thermochemistry.shtml.

11. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2005, 123,
124107.

12. (a) DeYonker, N. J.; Grimes, T. V.; Yockel, S. M.; Dinescu, A.; Mintz, B.;
Cundari, T. R.; Wilson, A. K. J. Chem. Phys. 2006, 125, 104111/1. (b)
DeYonker, N. J.; Cundari, T. R.; Wilson, A. K. J. Chem. Phys. 2006, 124,
114104/1. (c) Ho, D. S.; DeYonker, N. J.; Wilson, A. K.; Cundari, T. R. J.
Phys. Chem. A 2006, 110, 9767−9770. (d) Grimes, T. V.; Wilson, A. K.;
DeYonker, N. J.; Cundari, T. R. J. Chem. Phys. 2007, 127, 154117/1. (e)
DeYonker, N. J.; Ho, D. S.; Wilson, A. K.; Cundari, T. R. J. Phys. Chem.
A 2007, 111, 10776−10780. (f) DeYonker, N. J.; Mintz, B.; Cundari, T. R.;
Wilson, A. K. J. Chem. Theor. Comput. 2008, 4, 328−334.

13. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem.
Phys. 1999, 110, 7650–7657.

14. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
15. (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007−1023. (b) Dunning, T.

H., Jr.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244−9253.
(c) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J.

197

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
3,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

00
9

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Chem. Phys. 1999, 110, 7667−7676. (d) Kendall, R. A.; Dunning, T. H.,
Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796−6806. (e) Woon, D. E.;
Dunning, T. H., Jr. J. Chem. Phys. 1994, 100, 2975−2988. (f) Woon, D. E.;
Dunning, T. H., Jr. J. Chem. Phys. 1995, 103, 4572−4585. (g) Peterson, K.
A.; Dunning, T. H., Jr. J. Chem. Phys. 2002, 117, 10548−10560.

16. (a) Xantheas, S. S.; Dunning, T. H., Jr. J. Phys. Chem. 1993, 97, 18−19. (b)
Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100,
7410−7415. (c) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669−674.
(d) Halkier, A.; Helgaker, T.; Jorgensen, P.; Klopper, W.; Koch, H.; Olsen,
J.; Wilson, A. K. Chem. Phys. Lett. 1998, 286, 243−252. (e) Wilson A. K.;
Dunning, T. H., Jr. J. Chem. Phys. 1997, 106, 8718−8726.

17. (a) Dunning, T. H., Jr.; Peterson, K. A. J. Chem. Phys. 2000, 113,
7799−7808. (b) Leininger, M. L.; Allen, W. D.; Schaefer, H. F.; Sherrill, C.
D. J. Chem. Phys. 2000, 112, 9213−9222. (c) Handy, N. C.; Knowles, P. J.;
Somasundram, K. Theor. Chim. Acta 1985, 68, 87−100.

18. (a) Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89−155. (b) Hess, B. A.
Phys. Rev. 1986, A33, 3742−3748.

19. (a) Montgomery, J. A., Jr.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys.
1994, 101, 5900−5909. (b) Ochterski, J. W.; Petersson, G. A.; Montgomery,
J. A., Jr. J. Chem. Phys. 1996, 104, 2598−2619. (c) Montgomery, J. A.,
Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999,
110, 2822−2827. (d) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.;
Petersson, G. W. J. Chem. Phys. 2000, 112, 6532−6542.

20. Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916–4926.
21. (a) Martin, J. M. L.; de Oliveira, G. J. Chem. Phys. 1999, 111, 1843−1856.

(b) Parthiban, S.; Martin, J. M. L. J. Chem. Phys. 2001, 114, 6014−6029. (c)
Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállay M.; Gauss,
J. J. Chem. Phys. 2004, 120, 4129−4141. (d) Karton, A.; Rabinovich, E.;
Martin, J. M. L.; Ruscic, B. J. Chem. Phys. 2006, 125, 144108.

22. Tajti, A.; Szalay, P. G.; Császár, A. G.; Kállay, M.; Gauss, J.; Valeev, E. F.;
Flowers, B. A.; Vázquez, J.; Stanton, J. F. J. Chem. Phys. 2004, 121, 11599.

23. (a) Ruscic, B.; Pinzon, R. E.; Morton, M. L.; von Laszewski, G.; Bittner, S.;
Nijsure, S. G.; Amin, K. A.; Minkoff, M.; Wagner, A. F. J. Phys. Chem. A
2004, 108, 9979−9997. (b) Ruscic, B.; Pinzon, R. E.; von Laszewski, G.;
Kodeboyina, D.; Burcat, A.; Leahy, D.; Montoya, D.; Wagner, A. F. J. Phys.:
Conf. Ser. 2005, 16, 561−570. (c) Ruscic, B.; Pinzon, R. E.; Morton, M.
L.; Srinivasan, N. K.; Su, M.-C.; Sutherland, J. W.; Michael, J. V. J. Phys.
Chem. A 2006, 110, 6592−6601.

24. (a) Wheeler, S. E.; Robertson, K. A.; Allen, W. D.; Schaefer, H. F.; Bomble,
Y. J.; Stanton, J. F. J. Phys. Chem. A 2007, 111, 3819−3830. (b) Wheeler, S.
E.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 2004, 121, 8800−8813. (c)
Császár, A. G.; Allen, W. D.; Schaefer, H. F., III. J. Chem. Phys. 1998, 108,
9751−9764.

25. Schmidt, M. W.; Gordon, M. S. Annu. Rev. Phys. Chem. 1998, 49, 233–266.
26. Solling, T. I.; Smith, D. M.; Radom, L.; Freitag, M. A.; Gordon, M. S. J.

Chem. Phys. 2001, 115, 8758–8772.

198

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
3,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

00
9

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



27. (a) Bytautas, L.; Ruedenberg, K. J. Chem. Phys. 2004, 121, 10905. (b)
Bytautas, L.; Ruedenberg, K. J. Chem. Phys. 2004, 121, 10919.

28. (a) Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc.
1970, 92, 4796−4801. (b) Radom, L.; Hehre, W. J.; Pople, J. J. Am. Chem.
Soc. 1971, 93, 289−300. (c) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.;
Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New
York, NY, 1986.

29. (a) George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theor. Chem. Acc.
1975, 38, 121−129. (b) George, P.; Trachtman, M.; Bock, C. W.; Brett, A.
M. Tetrahedron 1976, 32, 317−323. (c) George, P.; Trachtman, M.; Bock, C.
W.; Brett, A. M. J. Chem. Soc., Perkin Trans. 1976, 2, 1222−1227.

30. Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1983, 105, 7500–7505.
31. Black, G.; Daily, J.; Elsethagen, T.; Feller, D.; Gracio, D.; Jones, D.; Keller,

T.; Matsumoto, S.; Palmer, B.; Peterson, M.; Schuchardt, K.; Stephan,
E.; Sun, L.; Swanson, K.; Taylor, H.; Vorpagel, E.; Windus, T.; Winters,
C. ECCE, A Problem Solving Environment for Computational Chemistry,
Software Version 5.1;Pacific Northwest National Laboratory: Richland,
WA, U.S.A., 2009.

32. (a) Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T.
P.; Valiev, M.; Wang, D.; Apra, E.; Windus, T. L.; Hammond, J.; Nichols, P.;
Hirata, S.; Hackler, M. T.; Zhao, Y.; Fan, P.-D.; Harrison, R. J.; Dupuis, M.;
Smith, D. M. A.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Wu, Q.; Van
Voorhis, T.; Auer, A. A.; Nooijen, M.; Brown, E.; Cisneros, G.; Fann, G. I.;
Fruchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J. A.; Tsemekhman,
K.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc,
D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.;
Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh,
R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.;
Pollack, L.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.;
van Lenthe, J.; Wong, A.; Zhang, Z. NWChem, A Computational Chemistry
Package for Parallel Computers, Version 5.1; Pacific Northwest National
Laboratory: Richland, WA, U.S.A., 2007. (b) Kendall, R. A.; Apra, E.;
Bernholdt, D. E.; Bylaska, E. J.; Dupuis, M.; Fann, G. I.; Harrison, R. J.; Ju,
J.; Nichols, J. A.; Nieplocha, J.; Straatsma, T. P.; Windus, T. L.; Wong, A. T.
Computer Phys. Commun. 2000, 128, 260−283.

33. CRCHandbook of Chemistry and Physics; Lide, D. R., Ed.; 89th ed. (Internet
Version 2009); CRC Press/Taylor and Francis: Boca Raton, FL, 2009.

199

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
3,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

00
9

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Chapter 10

Development of Detailed Kinetic Models for
the Thermal Conversion of Biomass via First
Principle Methods and Rate Estimation Rules

Hans-Heinrich Carstensen* and Anthony M. Dean

Chemical Engineering Department, Colorado School of Mines, Golden,
Colorado, USA

*hcarsten@mines.edu

Electronic structure methods have matured to a point that they
can be routinely used to calculate rate expressions for kinetic
mechanisms. However, given the size of modern reaction sets,
it is not feasible to perform high-level calculations for every
reaction found in a kinetic model. Furthermore, chemically
accurate calculations can only be done for moderately small
species. Therefore we propose to derive kinetic expressions
from first principle calculations on a series of small reactants
for a given reaction class and use the data to create rate
estimation rules. Those are then used for all members of the
reaction class. In this contribution we discuss four selected
example systems related to the thermal conversion of biomass
to illustrate this approach or to show its limitations. The
reaction classes include H abstraction and water elimination
reactions from alcohols, retro-Diels-Alder reactions and the
initial unimolecular decomposition step in phenyl ethers.

Introduction

Detailed chemical kinetic modeling has proven to be a valuable tool to
optimize the operation conditions of complex chemical systems. Examples
include the successful application of atmospheric and tropospheric chemistry
models to understand the ozone formation and destruction cycles (1, 2); ignition
and combustion models to predict and adjust heat release profiles in internal
combustion engines such as the homogeneous charge compression ignition engine

© 2010 American Chemical Society
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(3) and to prevent soot formation (4); microkinetic NOx models to analyze and
improve three-way catalysts (5); and many others. Given these successes, it is
clear that the availability of a reaction model, composed of elementary reaction
steps, for the biomass gasification process would be of tremendous value to
engineers who try to make this technique economically feasible. However, despite
many decades of research in biomass pyrolysis, such a model has yet to emerge.
Part of the reason is the complexity and varieties of components found in biomass
material (6). Even if only the three major components cellulose, hemicellulose
and lignin are considered, biomass is still not well defined because the relative
compositions of these three different components vary substantially in different
biomass sources. Furthermore the components themselves are not well-defined
molecules but macromolecules with varying degrees of (co-)polymerization
and crystallization. A second major obstacle in developing a detailed chemical
model for the thermochemical conversion of biomass is that reactions proceed
simultaneously in the condensed phase (solid, melted or solution) and in the gas
phase, and the degree to which reactions in each phase contribute depends on
difficult to control parameters such as mineral content, acidity, prior treatment
of the biomass, heat transfer within chunks of biomass and so on. Given these
difficulties it seems unlikely that a comprehensive kinetic model completely
based on elementary reactions can be developed in the foreseeable future.

One solution to this dilemma is to focus on gas phase reactions and to
substitute the major biomass components with a set of model compounds.
Generation of an elementary reaction mechanism for such a system is still a
daunting task since it will likely contain hundreds of species and thousands of
reactions. However, there are good reasons to believe that such a mechanism can
be developed in the near future. First, even though oxygenated species formed
via biomass volatilization react certainly differently than hydrocarbon species, we
expect that the same reaction types will be important. This means we can learn
from the decades long experience of kineticists in creating hydrocarbon pyrolysis
and oxidation (combustion) mechanisms. Related to this, there is significant
evidence that suggests that the biomass pyrolysis leads to secondary and tertiary
products that are less oxygenated (6–12) and hence pure hydrocarbon chemistry
will form an important subset of any biomass model. Second, rate constants
for many reaction classes have been shown to be very consistent with respect
to a homologous series of reactants. This allows one to develop rate estimation
rules for such reaction classes. These rate rules simplify the assignment of rate
constants and lead to internal consistency of the rate expressions in a mechanism.
Third, the increase of CPU power, data storage capacity and the improvement
of algorithms have made theoretical calculations of thermodynamic data and
rate expressions even for moderately large molecules feasible. This not only
enables one to calculate rate constants for a desired reaction but also to provide
kinetic data sets to develop the aforementioned rate estimation rules. Finally,
sub-mechanisms for a number of model compounds are already known in the
literature. For example, Sendt et al. (13) developed a furan pyrolysis mechanism,
Horn et al. provide a reaction scheme for phenol (11), Pecullan et al. (14)
describe a kinetic set for anisole pyrolysis, Britt and coworkers (15) studied the
reaction pathways of phenethyl phenyl ether, and so on. Such sub-mechanisms
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can be incorporated either directly or with moderate adaptations into a biomass
mechanism and thus significantly reduce the mechanism development time.

In this chapter we will discuss our approach to develop a biomass gas phase
mechanism. A significant emphasis will be on the development and use of rate
estimation rules. The simple rules are expressed in modified Arrhenius form

For each reaction class the rate rule defines a common pre-exponential factor
(A•Tn), normalized on a per site basis. The E value, to which we will refer in the
following as the activation energy or barrier even though it strictly speaking differs
from the activation energy by nRT, is either a constant value, or it is obtained from
the heat of reaction, ΔRH, via an Evans-Polanyi relationship,

Application of rate rules in the mechanism development process requires
knowledge of their transferability. In other words, one needs to know how
closely related a reaction has to be to the test set (reaction class) to be sure that
the rule can still be applied with acceptable accuracy. For example: Can a rate
rule that is valid for simple alcohols also be used for polyols or alcohols with
other functional groups? This question will be addressed in two examples: (1)
H abstraction from oxygenates by H and CH3 radicals and (2) the elimination of
molecular water from alcohols. Both examples provide insight in how far the
influence of a functional group extends to neighboring molecular sites. With
respect to the abstraction reactions, we will investigate if and how the reactivity
of C-H bonds in the α–, and β–positions are altered due to the OH group. The
impact of neighboring functional groups on the reactivity will also be addressed
in the second reaction class (H2O elimination from alcohols). In addition it
will serve as a basis to discuss the reliability of different calculation methods to
yield accurate kinetic parameters. Since biomass material is mainly made up of
large polymers, it is desirable to study model compounds as large as feasible to
explore non-next-neighbor effects. However, large molecules (e.g., cellubiose
and beyond) cannot be treated by high-level electronic structure methods, and the
question arises as to whether lower-level methods provide acceptable results. A
third aspect addressed using the water elimination reaction as an example deals
with the role of water molecules in the gas phase. The gas phase in a thermal
biomass gasifier contains large amounts of water. Therefore there might be a
possibility that water can act as a catalyst in the elimination process.

Not all reactions in a given mechanism can be described by rate estimation
methods. In order to provide examples for reaction systems of expected
importance in biomass gas phase chemistry that do not seem to be following
such rules we will discuss some results for retro-Diels-Alder reactions involving
anhydro-glucose and levoglucosenone. Finally, we present calculations related
to the initial decomposition reactions of phenyl ethers with the focus on the
possibility to simplify the calculations by either replacing the large phenyl group
by a smaller kinetically similar vinyl group or by performing the calculations
with a faster electronic structure method.
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The remainder of this chapter is organized as follows. First we will outline
the calculation methods used in this work with an emphasis of special problems
associated with H-bonds found in many oxygenates (biomass model compounds).
Next, we discuss results for the four reaction systems mentioned previously,
followed by a discussion that will attempt to provide a more comprehensive
picture of the role and limitations of rate rules. In conclusion, we summarize the
major results of the calculations (a) with respect to generalized rate expressions
and (b) in terms of the importance for biomass gas-phase chemistry.

Calculation Methodology

The methodology used in this work consists of three main steps. First,
electronic structure calculations are performed to determine an optimized
geometry and the lowest electronic energy. Molecular parameters obtained in
the first step are then used in a statistical thermodynamics analysis that provides
thermodynamic properties. Finally, transition state calculations using these
thermodynamic data as input yield the rate expressions. In the following we
provide more details of this approach.

Electronic Structure Calculations

The choice of the calculation method is generally determined by two
opposing factors: the desire for highly accurate results and the need to obtain
these in a reasonable time frame on the available computing platform. Among
the many methods that emerged in the past two decades to fulfill both conditions
the CBS-QB3 method by Peterson and coworkers (16, 17) has gained particular
popularity. It provides accurate energetics (for most species of the G2/97 test set
the error is within about 1 kcal/mol (17), but this test set contains mainly small
molecules and a larger average error is expected for species of increased size (18))
and can be applied to moderately large molecules. More specifically, CBS-QB3
calculations for molecules with up to 10-12 non-hydrogen atoms are feasible
on supercomputers with sufficient scratch space and memory. Furthermore,
recent studies by several groups have shown that the CBS-QB3 method also
provides accurate results for transition states (19–21); hence, this method is an
obvious choice to investigate reactions of biomass model compounds. On the
other hand, since the disk storage, memory and CPU time requirements increase
exponentially with the number of (heavy) atoms, its usefulness will possibly even
in the future be limited to molecules that can only partly been regarded as model
compounds for biomass.

Most of the calculations described in this chapter have been performed at the
CBS-QB3 level of theory as implemented in the Gaussian 03 suite of programs
(22). It is a well-defined multi-step calculation procedure that determines
geometries and frequencies at the B3LYP/CBSB7 level of theory (23–25) and
combines several higher level energy calculations and extrapolations to obtain
a “complete basis set” approximation of the electronic energy that accounts for
a large portion of electron correlation. To explore the possibility of using lower
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level calculations applicable to larger molecules, we compare CBS-QB3 results
in the study of the H2O elimination from alcohols with data obtained with the less
expensive CBS-4M (17, 26) and the widely used B3LYP/6-31G(d) method. The
CBS-4M method is also a composite method that involves several calculation
steps at different levels of theory while, in contrast, B3LYP/6-31G(d) energies
are obtained from single self-consistent field calculations. The CBS-4M method
was also used in the phenyl ether study.

Thermodynamic Properties

The primary results from electronic structure calculations are the electronic
energies, geometries and frequencies of amolecule. We use the atomization energy
method (27) to convert electronic energies into heats of formation. An analysis by
Petersson et al. has shown that atomization energies at the CBS-QB3 level contain
systematic bond errors that can be corrected to improve the heats of formation
(18). In this work we are mainly interested in relative energies and therefore do
not apply such corrections. However, such a correction would be necessary if the
calculation results were to be used to build a thermodynamic database. Statistical
mechanicsmethods are used to calculate the entropy at 298K and heat capacities as
a function of temperature from the geometry (rotational constants) and frequency
data. All harmonic frequencies are scaled by a factor that depends on the method
used for the frequency calculation (28) (e.g., a factor of 0.99 is used to scale
frequencies obtained with the CBS-QB3 method). Except for those vibrations that
resemble a rotation around a single bond (hindered rotation), the analysis relies on
the harmonic oscillator rigid rotor assumption.

Internal rotations are treated separately for several reasons: (1) Those
modes are often associated with low-frequency vibrations. Small errors in these
difficult to calculate frequency values have a profound impact on the entropy
and heat capacity results, and replacing those with the hindered rotor treatment
generally improves the accuracy of the data. (2) Each frequency contributes
at high temperatures an amount of R to the heat capacity (Cp) while internal
rotors contribute only R/2 to Cp. Hence, a vibration resembling a rotation should
be treated as such to make sure that the correct high temperature Cp value is
reached. (3) Analyzing the internal rotations in a molecule by calculating the
corresponding hindrance potentials provides a convenient way to detect lower
energy conformers – provided the hindrance potential calculation is done at a
sufficiently high level of theory.

The first step of the hindered rotor treatment is the aforementioned calculation
of the hindrance potential. This is generally done via a relaxed potential energy
surface scan (PES scan) in which the dihedral angle corresponding to the selected
rotation is varied in steps of 10 degrees until a full rotation (360 degrees) is
achieved. At each value of the dihedral angle all other degrees of freedom are
allowed to change until the energy is minimized. In some cases, however, we
fix additional coordinates to ensure that the final energy and geometry after
360-degree rotation are the same as those of the starting point. The requirement
to return to the same geometry and energy after a full rotation is normally easily
achieved for pure hydrocarbons, but this is not necessarily the case for oxygenates
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such as sugars. The reason is that oxygen containing functional groups can act as
a donor or acceptor of hydrogen bonds. Since these relatively strong bonds may
be broken during the rotation (e.g., of a hydroxyl group), the geometry might
change during this rotation to an extent that another local minimum position
on the PES is reached. In Figure 1 we present hindrance potential results for a
rotating OH group in ethylene glycol, obtained at the B3LYP/6-31G(d) level of
theory to illustrate this problem. As can easily be seen, the 360 degrees rotation
around the C-OH bond of the left hydroxyl group leads to a different geometry
and energy (the hydrogen bond is lost). This new geometry belongs to a local
minimum but not to the original global minimum. Since the geometry is not
restored, this is not a pure rotation. In addition, clockwise and counter clockwise
rotations lead to different hindrance potentials. Figure 1 also shows that a small
part of both (cw and ccw) hindrance potentials overlap. We can use this overlap
region to construct an approximate potential by combining parts of both scans
(the full line in Figure 1). This leads to more plausible hindrance potentials than
using either of the original potentials, even though a sometimes arbitrary decision
has to be made in terms of how to combine the two scans. The combined potential
is then fitted to a Fourier series prior to its use in the hindered-rotor calculation.

Besides the hindrance potential the hindered rotor evaluation requires a
value for the effective moment of inertia. For symmetric rotors this value is
easily calculated since the rotating axis coincides with the actual bond (29), but
for asymmetric rotors the calculation is more demanding. Kilpartick and Pitzer
(30) solved this problem for the general case and East and Radom (31) provided
practical approximate methods to calculate effective moment of inertias for
internal rotations. We use their I(2,3) method in this work.

With the potential and effective moment of inertia in hand we can solve the
Schrödinger equation for an one-dimensional rotor and use the energy eigenvalues
to calculate the partition function and contributions of this mode to the thermal
energy, entropy and heat capacity.

The outlined method is used to calculate thermodynamic properties for
reactants, products as well as transition state structures. In the latter case the
imaginary frequency is ignored. Thermodynamic data are calculated for a
temperature range of 300K to 2500K, fitted to NASA polynomials, and stored in
a database file.

Rate Expressions

The thermodynamic properties calculated as outlined in the previous
paragraphs serve as input data needed to calculate the rate constant via transition
state theory (TST) (32, 33):

Here, κ(T) is the tunneling correction factor, Vm the molar volume at standard
pressure (Vm = R•T/p, with p = 1atm), n is the molarity of the reaction (e.g., n=1
for unimolecular, n=2 for bimolecular), and ΔG# is the difference in Gibbs Free
Energy between the transition state geometry (ΔGTS) and the reactant(s) (ΔGReac),
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Figure 1. Hindrance potential for the internal rotation of the left OH
group in ethylene glycol. Open squares: clockwise rotation, filled circles:
counterclockwise rotation, solid line: “combined” hindrance potential. The

drawn structures are schematic representations of some geometries.

As usual, the ΔGTS term does not include contributions from the reaction path
mode (imaginary frequency). It is calculated from enthalpy (ΔH) and entropy
(ΔS) contributions stored in the thermodynamic database. The remaining symbols
in the TST rate expression represent common physical constants or variables. One
should note that this formulation of the transition state theory is equivalent to the
original and more commonly known formulation in terms of partition functions,

In this equation, QTS refers to the total partition function for the transition state
(with contributions from translation, rotation, vibration, internal rotation and so on,
but again with omission of the reaction coordinate) and QReac is the total partition
function for the reactant(s). Note that the ΔG# term in the exponential part is
replaced by the barrier height E, since entropic contributions are now accounted
for in the partition functions. We prefer the “ΔG version” of the transition state
theory because it allows us to directly use the thermodynamic database to retrieve
the input data and therefore ensures thermodynamic consistency in all steps of the
mechanism development process.

207

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

D
E

L
A

W
A

R
E

 M
O

R
R

IS
 L

IB
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
01

0

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



The temperature dependent transmission factor κ(T), which accounts for
contributions from quantum mechanical tunnelling, is obtained from asymmetric
Eckart potentials (34). The correction factors obtained in this way differ in most
cases only marginally from previous calculations in which we used the simpler
correction formula by Wigner (35). However differences become more severe for
reactions with small barriers and in those cases Eckart tunnelling corrections are
more reliable. The choice of the tunnelling method is mainly based on the fact
that this method can be applied automatically without additional calculations.
Other more sophisticated treatments such as the small curvature method (36)
require substantial additional efforts while probably changing the results by less
than a factor of two under biomass pyrolysis conditions. Given that the focus
is on the development of large biomass mechanisms, such an additional effort
seems not warranted at this time.

Results

Rate Rules for H Abstraction Reactions from Alcohols by H Atoms and
CH3 Radicals

During the biomass gasification process volatile primary pyrolysis products
are for a short time (about one to ten seconds) exposed to temperatures on the
order of 800°C. Under such reaction conditions gas phase radical reactions are
expected to play an important role in the cracking process. Consequently this
reaction type has to be incorporated into any comprehensive biomass gasification
mechanism. Two of the most dominant reactive species are H atoms and methyl
radicals, which will participate in H atoms abstraction reactions to produce
molecular hydrogen and methane. Since most of the C-H bonds are weaker
than the bonds in H2 and CH4 these reactions are slightly exothermic. On the
other hand, O-H bond strengths generally exceed those in H2 and methane and
those abstraction reactions are endothermic. Theoretical studies of H abstraction
reactions by H and CH3 from pure hydrocarbons have shown that individual rate
constants can - with high accuracy - be replaced by generic rate expressions (rate
rules) (20, 37–39). We expect that similar rate rules can also be formulated for
abstraction reactions involving oxygenated species. Since the hydroxyl moiety
is the most dominant functional group in carbohydrates we focus on abstraction
reactions related to this group. First, we discuss the applicability of rate rules
for H abstraction reactions by H atoms from a set of simple alcohols. Then we
briefly present analogous results for methyl radicals as the abstracting reactant.
This will demonstrate that methyl radicals behave similarly to H atoms even
though the kinetic parameters are different. We will also provide evidence that
the rate expressions for abstractions from C-H bonds that are two or more C
atoms away from the OH moiety converge to those for simple alkanes. All
calculations presented here are performed at the CBS-QB3 level of theory for
the most stable conformer at the DFT level. Although we will only selectively
provide detailed comparisons with experimental data, we note here that the
calculated abstraction rate constant for methanol plus hydrogen atom forming
molecular hydrogen and the hydroxyl methyl radical agrees to better than a factor
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of two with rate expressions found on the NIST chemical kinetics website (40).
A similar comparison for the second channel leading to methoxy and hydrogen is
not meaningful because no reliable experimental data are available. Nevertheless
we expect, also based on previous work (20), that our calculations are equally
accurate for other reaction pathways and larger reactants.

H-Abstraction by H Atoms from the Hydroxyl Group in Alcohols

We calculated rate constants for the abstraction of the hydroxyl hydrogen by
H atoms,

for the following alcohols (see Figure 2): methanol (CH3OH), ethanol (C2H5OH),
n-propanol (CCCOH), i-propanol (C2COH), n-butanol (CCCCOH), i-butanol
(C2CCOH), s-butanol (CCC(C)OH), and t-butanol (C3COH). The names in
parenthesis refer to our naming nomenclature in the figures, which removes
some hydrogens and avoids subscripts to make the legends more readable (the
product names in the plots should be self-explanatory). This set contains primary,
secondary and tertiary alcohols and provides information on the impact of the R
group on the abstraction rate constant. The calculated rate constants are plotted
in Figure 3 as a function of temperature. One can see that the rate constants
are so similar that individual rate constants cannot be recognized, except at low
temperature conditions, at which, however, all rate constants are sufficiently small
to make the reaction in practice unimportant. Since the R group has seemingly
little impact on the reactivity of the hydroxyl hydrogen it is possible to describe
the entire set of individual rate constants with a single generic rate expression
without introducing a substantial error:

Here, nH is the number of hydroxyl groups found in a molecule and for this
particular test set its value is always one. This rate expression (“rule”) was
obtained in two steps: First we averaged the temperature exponents n of all
individual rate constants, and refitted the calculated rate constants k(T) to a
new modified Arrhenius equation by using the averaged n-value as a constant
parameter. Then we averaged the A-factors and the activation energies to obtain
the final values of the rate rule. This two-step procedure takes into account that
the three parameters in modified Arrhenius expressions are strongly correlated. It
yields rate rules with lower errors than one would get if the three parameters were
independently averaged. Of course, a more rigorous procedure would have been
to subject all rate constants to a least-square optimization, but we don’t expect
significant improvements in the results. Also, while the data for the A, n, and E
parameters are given to 2 or 3 digits, this should not imply that these fitting values
are known with such a high accuracy. They obviously depend on the number of
test reactions, the accuracy of each individual rate constant as well on the validity
of the assumption that the reaction rate constants of a given reaction class can
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be generalized. A better measure of the accuracy of the rate rule expression is
to compare the generic rate constant to the individual TST constants at a typical
temperature of interest. For H abstraction from the hydroxyl group we found that
at 1000 K for all reactions of the test set the agreement with the rate rule value is
better than 20%. We also calculated the rate constant for the reaction of H atoms
with ethylene glycol,

As mentioned in “Calculation Methods”, intramolecular hydrogen bonding makes
the rate constant calculation for this reaction more difficult because the hindered
rotor treatment breaks the hydrogen bond. As a result one would anticipate a larger
uncertainty in particular in the pre-exponential factor. Thus it is remarkable that the
generic rate constant and the TST calculation yield the same value of k = 5.5E10
cm3mol-1s-1 at 1000 K.

Before continuing with other abstraction reactions, it is worthwhile to point
out mechanistic implications of this reaction class. Alkoxy radicals, which are
formed as products, can easily undergo β-scission reactions (41, 42) to either
produce aldehydes and H atoms,

or formaldehyde and an alkyl radical,

Taking the ethoxy radical as an example, both channels are only moderately
endothermic:

The activation energy of these β-scission reactions is about 6.4 kcal/mol above
the endothermicity (41). Although these data derived from CBS-QB3 energies
differ somewhat from MP2 and QCISD calculation results by Caralp et al. (41,
42) who report heats of reaction of 13.2 kcal/mol and 9.5 kcal/mol for above
channels, respectively, both studies agree that they differ by about 4 kcal/mol.
Using literature data for the heats of formation of formaldehyde (-27.7 kcal/mol
(43)), acetaldehyde (-39.2 kcal/mol (44)), methyl (34.8 kcal/mol (43)), and
hydrogen (52.1 kcal/mol (43)) we obtain with our heats of reaction results for
ethoxy radical heat of formation values of -4.0 and -4.3 kcal/mol, respectively.
These results are in excellent agreement with the literature value of -3.7+/-0.8
kcal/mol (45). In contrast, the value reported by Caralp et al. is 0+/-1 kcal/mol.
This implies that the CBS-QB3 based heats of reaction are likely more accurate.
In general, we expect uncertainties in calculated heats of reaction to be around
1 kcal/mol since some calculation errors will cancel out, but derived heats of
formation can be larger.

Returning to the decomposition of ethoxy: while the C-C bond scission is
dominant at low temperatures (< 500 K) (41), the only slightly more endothermic
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Figure 2. Structures and nomenclature for alcohols used in this study

Figure 3. Calculated rate constants (per H site) for the H abstraction from
simple alcohols ROH by H atoms

C-H bond cleavage will become increasingly competitive as the temperature rises.
Because aldehydes are more reactive than alcohols and the formed radical sustains
the abstraction process, we expect that this reaction sequence will increase the
reactivity of the mixture. In addition, the most likely fate of formaldehyde is its
oxidation to CO, one of the desired products of the gasification process.
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H-Abstraction by H Atoms from the C-H Bond in α-Position to the Hydroxyl
Group in Alcohols

We have calculated rate constants for the H abstraction by H atoms from C-H
bonds in the α-position to the hydroxyl group,

for the same set of alcohols described in the previous section, except obviously
for t-butanol. The results are presented in Figure 4. As expected, we find that
the rate constants depend on the nature of the C-H bond as is evident from the
fact that the entire set of rate constants group into three sub-categories. Methanol
is the only molecule with a primary α-C-H group and forms its own sub-set in
this context. The second sub-set consists of the reactions by ethanol, propanol,
n-butanol, and i-butanol. Finally the alcohols i-propanol and s-butanol containing
tertiary α-C-H bonds create the third group. The rate constants within the sub-sets
vary only slightly, so that it is reasonable to define two representative generalized
rate constants for secondary and tertiary α-C-H abstraction reactions by H atoms
from alcohols:

nH represents the number of α-C-H bonds in the reacting alcohol. Note again that
the values for the activation energy are fitting results and the number of digits
does not reflect the accuracy of these values. The quality of these generic rate
constants is good and deviations for a typical reaction temperature of 1000 K are
again within 20% or better. We also tested the applicability of the rate rule for the
reaction of ethylene glycol and found an agreement to within 35% at 1000 K. Such
a good agreement was not expected because one would think that the strength of
the internal H bond changes during the reaction. This should have an impact on the
rate constant and therefore distinguish the hydrogen abstraction in ethylene glycol
from simple alcohols. Obviously this effect appears to be small.

Similar to the H abstraction reactions from hydroxyl groups, the products
formed via abstraction of α-C-H’s of alcohols are very reactive and can easily
undergo β-scission reactions. One channel leads to H atoms and an aldehyde:

Alternative pathways produce unsaturated alcohols and either hydrogen or an alkyl
radical:

Because α-hydroxyalkyl radicals are about 10 kcal/mol more stable than alkoxy
radicals (e. g., the CBS-QB3 atomization energy ΔatomH298(CH3CH2CH•OH)
= -17.5 kcal/mol mol is 9.7 kcal/mol lower than ΔatomH298(CH3CH2CH2O•) =
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Figure 4. Rate constants for the H abstraction from C-H groups in α-position to
the hydroxyl moiety of simple alcohols.

-7.8 kcal/mol) these subsequent β-scission reactions are more endothermic than
those discussed earlier. For example, the calculated heats of reaction for the
CH3CH2CH•OH radical are

Evenwith a small additional barrier of a few kcal/mol, the available thermal energy
under typical gasification conditions should be sufficient to allow fast β-scission
reactions of RCH•OH radicals to occur. We expect that these subsequent reactions
accelerate the overall conversion process because the products are more reactive
and the radicals necessary for the H abstraction reaction are regenerated. Therefore
this reaction class and the chemistry of the products need to be incorporated in
biomass mechanisms.

The higher stability of RCH•OH radicals compared to RCH2O• radicals also
explains why the H abstraction reactions from α-CH bonds are faster than those
from the alcoholic hydroxyl group: a higher stability corresponds to a lower bond
strength and therefore a lower barrier. The fitted barriers E (in kcal/mol) for α-C-H
abstraction are with 2.5, 4.1 and 5.9 (for methanol) clearly smaller than the value
of 9.8 that was found for abstraction from RO-H. The same conclusion holds for
Arrhenius activation energies Ea (Ea = E + nRT) since all n values are similar.
The calculations also yield higher A-factors for the abstractions from α-C-H bonds
compared to those for the RO-H bond abstraction, but the reason for this is less
obvious.
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H-Abstraction by H Atoms from the C-H Bond in β-Position to the Hydroxyl
Group in Alcohols

Finally we present in Figure 5 results for H abstraction reactions from the
β-carbon position in alcohols:

As before, the rate constant is mainly determined by the nature of the C-H bond
as the three distinct groups of rate constants show, and the reactivity order follows
the general expectation: tertiary C-H bonds are more reactive than secondary C-H,
which in turn react faster than primary C-H bonds. Using the two-step procedure
described earlier to derive generic rate rules we obtain the following three rules
from fitting to the TST rate constants:

The rate constants are smaller than those obtained for α-C-H bonds, which is
mainly due to higher barriers. This can be rationalized by the fact that β-C-H
groups do not experience the stabilizing mesomeric effect of the OH group
(RC•OH Û RC=O•H) found for α-C-H sites. The barriers of the three rate rule
expressions for H abstraction from β-C-H bonds follow a linear Gibbs Free Energy
relationship and the slope of 0.93 is essentially identical to the Evans-Polanyi
slope found for alkanes. This is an indication that the influence of the functional
OH group ceases in the β-position and the rate rules for oxygenates converge to
those for hydrocarbons. We will come back to this point in the next section where
we discuss H abstraction rate rules for methyl radicals.

H Abstraction Reactions from Alcohols by Methyl Radicals

Hydrogen abstraction by methyl radicals leads to a series of analogous
reaction classes. In general we expect similar results compared to abstraction
by H atoms because of the nearly identical bond strengths in methane and the
hydrogen molecule. However, there are also at least three clear differences
between these reactants: (1) Hydrogen atoms are smaller and lighter than methyl
radicals and should therefore exhibit less steric interactions. (2) H atoms use their
spherical 1s orbital in abstraction reactions while the reacting orbital of methyl
radicals is of p-type. Since p-orbitals are oriented in space, this should add to the
expected increased steric sensitivity of abstraction reactions by methyl radicals.
(3) The hydrogen atom loses only translational degrees of freedom upon entering
the reaction while the methyl radical loses translational as well as rotational
degrees of freedom. These differences should manifest themselves in a larger
spread of the calculated rate constants. While this argument suggests that the
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abstraction rate constants for methyl are less uniform by nature, the calculation
results will also be less accurate, because the heavier methyl radical produces to
two low-frequency bending modes in the transition state. Frequencies depend
inversely on the square root of the reduced mass; hence heavier abstracting
reactants generate bending modes of lower frequency (if all other parameters are
kept the same). Unavoidable small errors in low-frequency vibrational modes
lead to large errors in the pre-exponential factor and might create fluctuations in
the rate constants of the test set. This makes it difficult to assign deviations of
individual rate constants to real reactivity differences.

In Figure 6 and Figure 7 we present the results for H abstraction from the
hydroxyl, and α-CH and β-CH groups by methyl radicals. The rate constants,
especially for the reactions of the OH and β-C-H sites show the expected impact
from steric interactions. For example, the rate constants for iso- and tertiary
butanol in Figure 6a are clearly smaller than those for the remaining alcohols.
Deviations are seen over the entire temperature range but they are largest at
the lower temperature end. This indicates that both the pre-exponential factors
and the activation energies are influenced by steric interactions. Despite these
deviations, the corresponding rate rules at 1000 K are still within a factor of two
of the TST results as Figure 6b reveals for abstraction reactions of the OH group.
The following rate rule expressions for CH3 as abstracting radical have been
obtained:

Since the OH moiety has its biggest impact on the reactivity of the α-CH bond,
we selected this reaction class to compare the Evans-Polanyi relationship for CH3
radicals with that obtained for H atoms (see Figure 8). Both slopes are identical
within the error margins and larger than unity. In general one would expect a
value between 0 and 1 for the slope, but larger values have been reported for other
reactions (46). The large value might be understood in terms of an additional
stabilization of the transition states (relative to the products) by hyperconjugation
with the alkyl groups. This explanation is equally valid for both, H atoms and
CH3 radicals as abstracting species. Further we notice a shift of the straight lines
by 4 kcal/mol. This reflects that, similar to H abstraction reactions involving pure
hydrocarbons, the barriers for abstractions by methyl groups are higher than those
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Figure 5. Rate constants for the H abstraction (per H) from C-H groups in
β-position to the hydroxyl moietyfor simple alcohols.

for H atoms. Since different orbitals are engaged in the reactions of H atoms and
CH3 radicals, finding different barrier heights for these reaction classes is plausible.

Finally we compare in Figure 9 the generic rate constants for H abstraction
by methyl radicals from the β-C-H groups in alcohols with those in pure
hydrocarbons. Obviously there is very little difference among the corresponding
rate expressions. This shows that the impact of the OH group on the reactivity of
neighboring C-H bonds vanishes at the β-position. In other words, except for the
immediate vicinity of the OH group we can apply generic rate constants for pure
hydrocarbons to estimate the reactivity of a C-H group. Unpublished results for
other oxygenates support this conclusion.

In summary, rate rules can be used confidently for H abstraction reactions
from different sites in alcohols. The OH group per se has only a notable reactivity
altering effect on C-H bonds in the α-position. It enhances the abstraction rate
constants of these C-H groups significantly, which makes alcohols more reactive
than alkanes. Steric effects are observed, especially if CH3 is the abstracting
species, but these effects are small and can to a first approximation be ignored.
While the rate estimation rules work well for the test set investigated, future work
needs to focus on the transferability of these rules to multi-functional molecules
with OH groups. Initial calculations with ethylene glycol as reactant indicate that
the rules might also be applicable if more than one functional group is present.

Rate Rules for the Gas-Phase Elimination of Water from Alcohols

An important reaction in biomass pyrolysis is dehydration. Although
probably most of the chemically bound water is released in the condensed phase
during the vaporization and depolymerization process, the question arises as to
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Figure 6. H abstraction rate constants per H from the OH moiety in alcohols by
CH3 radicals. (a) TST calculated rate constants (b) ratios between estimated and

calculated rate constants at 1000 K

whether gas phase reactions contribute to the dehydration of the primary pyrolysis
products of biomass. If so, which reactions are responsible? In the absence of
oxygen, the most likely mechanism for water formation is its elimination from
hydroxyl groups containing molecules such as sugars, (poly) alcohols and other
multifunctional primary pyrolysis products. In order to investigate the possible
role of this reaction type we performed a systematic study of the rate constants
- similar to the H abstraction reactions discussed in the previous sections. The
objectives of this part are, however, broader: (1) We are interested to see if
rate estimation rules also work for unimolecular elimination reactions. (2) If
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Figure 7. H abstraction rate constants on a per H atom basis from α- and β-C-H
sites in alcohols by CH3 radicals.

so, then the question of transferability of the rate rule(s) to related reaction
classes becomes important. (3) We will investigate the sensitivity of our rate
constant results to the calculation method by comparing the performance of two
lower-level methods with CBS-QB3. Should a lower level method be able to
produce acceptable results, one could use it with confidence to investigate the
reactivity of larger biomass model compounds. (4) Related to the molecular water
elimination reaction, we will also briefly discuss a ‘water assisted’ bimolecular
elimination pathway in the gas phase.
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Figure 8. Evans-Polanyi relationships for H abstraction by H and CH3,
respectively, from α-C-H in alcohols. The heats of reaction values are obtained

from CBS-QB3 calculations.

1. Rate Rule Development

To study the elimination of water from alcohols the following test set has
been chosen: ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, and
t-butanol (see Figure 2). The rate constants calculated using the same procedure
described previously are presented in Figure 10. Within the temperature range of
300 K – 2000 K the rate constants increase by more than 36 orders of magnitude
and reach values on the order of 1 x 106 s-1 at the highest temperature. This
strong temperature dependence is caused by a high activation energy (about 65
kcal/mol). All individual rate constants appear to group well together but the large
range of rate constants covered in Figure 10 makes an assessment of how well
the rate constants agree difficult. Hence we plot in Figure 11 the energies E from
restricted modified Arrhenius fits (as described for H abstraction reactions) against
the calculated heats of reaction.

All reactions are endothermic (see Table 1) but the degree of endothermicity
varies between 6.6 and 14.2 kcal/mol. It correlates reasonably well with the nature
of the C-H bond of the leaving hydrogen. The nature of the C–OH group on
the other hand seems to have little impact on the thermochemistry. For example,
water elimination from C2CCOH and from C3COH yield the same olefin i-butene
(C2C=C). Since the products are the same, the heats of reaction are determined by
the reactants. The reaction of C2CCOH is the least endothermic reaction (6.6 kcal/
mol) even though a primary C-OH bond is broken. In contrast, the endothermicity
for C3COH with a tertiary OH bond is the highest of this set (14.2 kcal/mol).
The next highest endothermic reactions involve CCC(C)OH, in which the OH is
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Figure 9. Comparison of the rate constants from rate rules for H abstraction by
CH3 radicals from C-H bonds in β-position of alcohols (solid lines) with those

of pure alkanes (broken lines)

Figure 10. Calculated unimolecular rate constants for the elimination of water
from simple alcohols.
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Figure 11. Evans-Polanyi plot for the elimination of molecular water from
alcohols. The different symbols distinguish the nature of the reacting C-H bond:
open squares: H from CH3 groups; triangles: H from CH2 groups; filled circle:

H from a CH group.

bound to a secondary carbon but a primary C-H bond is broken. Hence the type
of the C-H bond dominates the endothermicity. The most surprising aspect of the
Evans-Polanyi plot in Figure 11, however, is its slope. Typically, the barrier E
decreases with decreasing endothermicity but in this case the energetically more
favorable reactions have the highest barriers. The three lowest barriers belong to
alcohols in which the OH group is bound to either a tertiary or a secondary carbon
and the leaving H atom is connected to a CH3 group. This indicates that the type
of OH site and possible steric effects are stabilizing factors for the transition state.
Hence this unusual plot can be explained by different stabilization mechanisms for
the reactants and/or products and the transition states. The argumentation made for
E will also hold for the activation energy Ea (=E+nRT), since the E values were
obtained for a constant value of n.

Since the Evans-Polanyi plot reveals a small dependence of the barrier on the
heat of reaction, we use this information to generate for this reaction class a rate
rule with a variable barrier height. The recommended rate constant is:

Here nH is the number of equivalent C-H bonds that are available for the water
elimination. At T = 1000 K the use of this generic rate rule reproduces the
original rate constants within a factor of two except for ethanol, for which the
deviations are somewhat larger (factor of 2.4). Given the very strong temperature
dependence of this reaction class this agreement is sufficient for mechanism
development purposes.

Using an average E value of 62.4 kcal/mol, the rate rule evaluates at 1000 K to
3.1·10-2 s-1. A look at Figure 10 shows that the rate constants for simple alcohols

221

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

D
E

L
A

W
A

R
E

 M
O

R
R

IS
 L

IB
 o

n 
Ju

ne
 2

2,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 D
ec

em
be

r 
14

, 2
01

0 
| d

oi
: 1

0.
10

21
/b

k-
20

10
-1

05
2.

ch
01

0

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Table 1. Bond dissociation energies (BDE), heats of reaction (ΔRH298) and
barriers (E) for the water elimination from alcohols. All values are derived

from CBS-QB3 calculations. The estimated uncertainty is 1kcal/mol

BDE
C-OH

BDE
C-H ΔRH298 E

Reaction
kcal/mol kcal/mol kcal/mol kcal/mol

CCOH→C=C+H2O 95.2 102.8 11.6 62.7

CCCOH→CC=C+H2O 95.5 99.9 8.3 63.1

CCCCOH→CCC=C+H2O 95.3 100.1 8.5 62.6

C2COH→CC=C+H2O 96.6 103.0 12.2 61.9

C2CCOH→C2C=C+H2O 96.0 98.0 6.6 63.8

C3COH→C2C=C+H2O 97.8 103.1 14.2 61.7

CCC(C)OH→CCC=C+H2O 96.9 103.2 12.9 61.7

CCC(C)OH→c-CC=CC+H2O 96.9 100.1 11.4 62.5

CCC(C)OH→t-CC=CC+H2O 96.9 100.1 10.2 62.4

exceed the value of 1 s-1 between 1100 K and 1150 K. Considering a residence
time of several seconds in the thermal cracker, this reaction type could play a role
at the highest gasification temperatures.

2. Transferability of Rate Rules

Since the rate rule for water elimination is based on a test set containing
only simple alcohols, the question arises as to whether this rule is also valid for
reactants containing additional functional groups. We addressed this question
by calculating TST rate constants for OH group containing molecules that are
structurally related to carbohydrates, such as diols, hydroxyaldehydes, cyclic
alcohols and hemiacetals. We also investigated water elimination from the C2
position in levoglucosan. Some selected results are presented in Figure 12. Figure
12a compares predicted and calculated rate constants for the following three
cyclic alcohols:
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The solid lines represent the TST results and the dotted lines are rate rule
estimates from above using the three heats of reaction. The three estimates are
close together because the calculated heats of reaction for the three reactions are
similar and therefore the estimated E values range only between 61-63 kcal/mol.
On the other hand, the individually calculated constants vary clearly more than
the estimates, especially at low temperatures. Cylcopentanol reacts faster that
cyclohexanol and cyclobutanol, and the barriers of the modified Arrhenius fits
show substantially more variation than the predicted ones (between 60 and 67
kcal/mol). This suggests that the Evans-Polanyi relationship for linear alcohols
does not capture the differences in cyclic alcohols well. At higher temperatures
the differences between the estimated and the directly calculated rate constants
are relatively small and the rate rule yields reasonably close predictions.

Significantly larger deviations are observed for substituted aldehydes when
water is eliminated from the α,β-position. This is demonstrated in Figure 12b for
the reactants 3-hydroxy propanal and glyceraldehyde.

The calculated rate constants for both reactants are clearly larger than predicted
by the rate rule. This is not surprising, because the rate rule was developed for
saturated alcohols yielding olefins with an isolated double bond. In contrast, these
two reactions yield products with conjugated double bonds. In other words, the
aldehyde moiety influences the reactivity by stabilizing the transition state and the
products via a stabilizationmechanism (themesomeric effect) that is different from
simple aliphatic alcohols. Furthermore, the inverse Evans-Polanyi relationship
found for simple alcohols leads to a severe overestimation of the barrier. This
explains the discrepancy between the estimated and calculated rate constants. In
Figure 12b we also include the rate constant for water elimination from ethylene
glycol (HOCCOH, see Figure 1 for the structure). This rate constant is very close
to the estimates. Similar to the observation for H abstraction reactions we can
conclude that the rate rule for water elimination works satisfactorily for ethylene
glycol and probably other polyols as long as the hindered rotor analysis treats intra-
molecular hydrogen bonds adequately.

The third part of Figure 12 shows the results of applying the rate rule to two
cyclic hemiacetals
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Figure 12. Comparison of calculated rate constants for the water elimination
from multifunctional alcohols to estimated rate constants using the rate rule. The

barriers E are approximate values. See text for details.

and to levoglucosan. The following water elimination reaction of levoglucosan
has been considered:
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The calculations predict the rate constants for the two hemiacetals to be
very close at high temperature (they converge to a constant pre-exponential
factor), but the 5-member ring reacts at low temperatures clearly faster than the
2-hydroxy-tetrahydropyran (6-member ring structure). The magnitude of this
difference is not captured by the rate rule (see the two dotted lines in Figure 12),
although it predicts a slightly higher reactivity for 2-hydroxy- tetrahydrofuran,
HOcy(COCCC), than for 2-hydroxy-tetrahydropyran, HOcy(COCCCC). Since
the Evans-Polanyi relationship was developed for linear alcohols, it does not
capture ring-strain effects. The rate rule agrees qualitatively with the convergence
of both hemiacetal rate constants at higher temperatures, but the predicted value
is too small.

The rate constant for the elimination reaction of levoglucosan is significantly
lower than rate constants for the hemiacetals. This is also obviously related
to the ring strain, which increases significantly in the product. The large
endothermicity of this reaction of more than 44 kcal/mol confirms this point. The
inverse Evans-Polanyi relationship (Figure 11) predicts that the barrier should
be significantly lower compared to those for simple alcohols and hemiacetals.
More specifically, it predicts a barrier of 53.6 kcal/mol for the levoglucosan
reaction, while the predicted barriers for the hemiacetals are 60.6 kcal/mol
and 61.4 kcal/mol. This predicted low barrier for the levoglucosan reaction is
obviously in contradiction with the results shown in Figure 12 and also with the
common wisdom that reactions leading to sterically constrained products should
have higher barriers than similar reactions that do not lead to strained products.
Therefore, the rate rule cannot be applied to this reaction and we did not even
include the estimated rate constant in Figure 12c.

The example of water elimination from levoglucosan together with the
reactions leading to conjugated double bonds show that chemical intuition can
often a priori determine when a rate rule is likely to fail. Those identified
reactions would require an individual kinetic analysis. In all other cases, for
which no obvious reasons for a dramatic failure of the rate rule exist, the estimates
are reasonably close to the ‘correct’ values. Since rate and sensitivity analysis
tools in modeling software are able to identify crucial reactions in a kinetic model,
one can use rate rules to quickly create a reasonably complete reaction set without
worrying too much about high accuracy. At a later stage those reactions that are
shown to be important under certain given conditions can be reinvestigated in
more detail.
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3. Performance of Lower Levels of Theory

We repeated the rate constants calculations for water elimination from simple
alcohols of the test set with two lower level methods: the CBS-4M composite
model and the B3LYP/6-31G(d) DFT method. The main motivation to use these
lower level theories is to investigate their reliabilities. The hope is to identify
one of these methods to be capable to produce kinetic data with acceptable
accuracy and reliability. This would allow one to extend calculations to larger
and more biomass-like model compounds. On the other hand, finding out that
neither method is capable of producing rate constants with an acceptable quality
is also a valuable result because this would support our strategy to focus on small
to medium sized representative molecules and to use these results to develop
generalized rate expressions.

Our reasons for selecting the two above mentioned methods for this part
of the study are outlined in the following. The hybrid DFT method B3LYP is
widely used and known to produce in the majority of cases accurate geometries
and, after application of a scaling factor, reasonably accurate frequencies. B3LYP
geometries do not depend strongly on the size of the basis set, so even the
6-31G(d) set works well. Hence the entropy and heat capacities calculated from
B3LYP results are generally quite accurate. Note, however, that some exceptions
to this general assessment exist. The main issue with the B3LYP calculation is
the reliability of predicted energies (47). In contrast, the CBS-4M method is
designed to provide rather accurate electronic energies at a low cost of CPU time
and moderate demands for memory and disk storage space. To do so it relies
among other things on less reliable geometry and frequency calculations at the
Hartree Fock and MP2 level of theory with small basis sets. If the optimized
geometries deviate significantly from the correct structure, the will likely result in
inaccurate entropies. Thus the choice of these two calculation methods includes
one method that has its strength in the geometry optimization aspect and a second
one with advantages in the energy calculation. Both methods are fast enough that
they can be applied to molecules that are significantly larger than glucose.

The rate constants obtained with both calculation methods are shown in
the top panel of Figure 13. Each calculation set shows some spread in the
rate constants at low temperatures but they seem to converge to a common
pre-exponential factor at high temperatures. As indicated in the figure, the set of
rate constants from CBS-4M data is systematically below that obtained with the
B3LYP method. This becomes clearer from an examination of the resulting rate
rules shown in the bottom part of Figure 13. The rate rules based on individual
rate constant calculations with these two models were derived in the same manner
as described earlier for the CBS-QB3 calculations. The B3LYP rate rule agrees
very well with the CBS-QB3 result, which is taken as reference, while the
supposedly more accurate CBS-4M data deviate clearly from the solid reference
line. To further investigate this matter, we compare in Figure 14 the heats of
formation for the reactants and transition states. These results are presented
relative to the CBS-QB3 results, which again serve as benchmark. One can see
that the B3LYP/6-31G(d) energies for both the stable species and the transition
states are consistently between 7-9 kcal/mol above the CBS-QB3 values. (The
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Figure 13. Rate constants for the elimination of water from simple alcohols. (a)
individual TST rate constants calculated at the B3LYP/6-31G(d) and CBS-4M
levels of theory, (b) comparison of the rate rules generated from the data in (a).

heat of formation for C3COH is about 11 kcal/mol higher, which causes the rate
constant for this reaction to deviate somewhat from the rest). Since the barrier
height depends on the difference between transition state and reactant energies,
the rather large individual errors cancel out. This explains the unexpected good
rate constant predictions by the B3LYP method. On the other hand, all individual
CBS-4M results are much closer to the CBS-QB3 data compared to the B3LYP
method. However, the deviations are not constant but instead vary between –1
and –4 kcal/mol for the set of reactants and between +2 and –1 kcal/mol for
the transition states. Consequently there is no fortunate error cancellation as in
the B3LYP case. The barriers are predicted to be on average about 3 kcal/mol
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Figure 14. Comparison of the heats of formation for (a) reactants and (b)
transition states obtained at the B3LYP/6-31G(d) and CBS-4M levels of

theory. The results are presented relative to the CBS-QB3 data, which serve as
benchmarks.

higher than the CBS-QB3 barriers and this leads to the predictions of smaller rate
constants at lower temperatures.

At higher temperatures, meaning under conditions where the rate constant
is dominated by the pre-exponential factor, all three methods yield quite similar
results. This suggests that the geometry and frequency information obtained
with the CBS-4M method for this reaction class is sufficiently accurate (not
notably worse that the DFT based data). A possible explanation for this finding
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is that the transition states are tight and the reactive centers are therefore well
defined on the PES. This leads to large frequencies for the vibrational modes
of the reactive groups, which even if they contain some uncertainties, do not
introduce notable errors in the partition function part (or equivalently in the
entropy contribution). Errors in the pre-exponential factor are mainly caused by
low-frequency modes and internal rotations, if these modes differ in the transition
state and the reactant(s).

The conclusion that the apparent accuracy of the B3LYP calculations is due to
a fortunate cancellation of errors leads to the question as to whether this is also the
case for the reverse reaction. A requirement for yielding accurate rate constants
for the reverse process is that the heats of reaction calculated at the B3LYP level
are in agreement with those obtained with CBS-QB3 theory. This is not the case as
can readily be seen from Figure 15. The B3LYP/6-31G(d) results are consistently
higher (5-9 kcal/mol) than the CBS-QB3 values. On the other hand, the CBS-4M
values are remarkably close to the CBS-QB3 benchmark values. Therefore, among
the two methods tested the CBS-4M method is probably the better choice for
systems too large for CBS-QB3, with the recognition that calculated rate constants
will be more uncertain.

4. Is the ‘Water Assisted’ Elimination of Water from Alcohols Competitive?

The rate constants discussed in the previous sections are very small except at
temperatures well above 1000 K. From experimental studies we know that water
is formed at much lower temperatures (48–50). This suggests that the molecular
elimination from hydroxyl groups carrying molecules is likely unimportant.
However, it could be possible that steam in the gas phase is able to catalyze
the elimination process and hence accelerate it. The following schematic
representation of a transition state structure shows how a H2O molecule can act
as a catalyst in the elimination process:

The water molecule in the upper right part of the scheme abstracts the leaving H
atom from the alcohol while simultaneously donating one of his H atoms to the
leaving OH moiety. The breaking C-OH and C-H bonds of the alcohol form the
new double bond of the alkene product molecule.

We investigated the potential of this reaction by calculating rate constants for a
few alcohols. The results are presented in Figure 16 (top). All rate constants group
nicely together indicating that a rate rule will work well for this reaction class.
However, the magnitude of the rate constants for this bimolecular reaction is very
small. To demonstrate this we converted the second order rate constant to a first
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Figure 15. Comparison of calculated heats of reaction for the elimination of
water from alcohols at the B3LYP/6-31G(d), CBS-4M and CBS-QB3 level.

order rate expression assuming a water content of 40% and 1 atm pressure. The
obtained pseudo-first order rate constants are shown in the bottom panel of Figure
16. It becomes immediately clear that the water-catalyzed reaction is several
orders of magnitude slower than the direct unimolecular channels (see Figure 10).
Given the big difference, this means that increasing the pressure by an order of
magnitude will still not make the bimolecular reaction competitive towards the
unimolecular elimination pathway. This leads to the conclusion that the water
assisted elimination of water from alcohols in the gas phase is unlikely to make a
significant contribution to the biomass pyrolysis chemistry.

Retro-Diels-Alder Reactions: A Rapid Reaction Path to Small Pyrolysis
Products?

A large fraction of biomass material contains moieties with 6-member ring
structures, such as the pyranosic rings in cellulose and hemicellulose. If the first
decomposition step involves the loss of water or an alcohol, the possibility of
forming an unsaturated 6-member ring exists. Those species should be able to
undergo a retro-Diels-Alder (rDA) reaction. To test whether this reaction class is
fast enough to be important in the rapid gasification process, we studied two such
reactions involving derivatives of levoglucosan. The following reaction sequences
were considered:
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The initial reaction step in both reaction schemes involves the formation of a
double bond and a new hydroxyl group. TST calculations yielded rate constants on
the order of 10 s-1 at 1073 K and confirmed that this reaction is fast enough at high
biomass conversion temperatures to proceed. (During a typical residence time of
several seconds in the thermal cracker all of the levoglucosan would undertake the
olefin formation step if no other reaction pathways were competitive). Once the
unsaturated products are formed they can undergo the retro-Diels-Alder reaction.
We are interested in the rate constants for these reactions or generally this reaction
class.

Electronic structure calculations at the CBS-QB3method followed by the TST
calculations yielded the following rate constants and heats of reaction for the retro-
Diels-Alder reaction (given in simple Arrhenius format):

Even though both reactions belong to the same reaction class (it is the reverse
reaction of a Diels-Alder reaction, a 4π+2π cycloaddition reaction), the obtained
kinetic parameters differ significantly. This is not only true for the barriers but also
for the pre-exponential factors, which differ by two orders of magnitude. In this
concrete example, the reasons are at least partially clear: the reactant of rDA-2 is
approximately 7.5 kcal/mol more stable than the anhydro-glucose species of rDA-
1, while the products of the first rDA reaction are about 8 kcal/mol more stable
than those of r-DA2. This makes rDA-2 more than 15 kcal/mol more endothermic
and explains the significantly higher barrier. The clearly different A-factors can
be explained in a similar way: Even though the reactants of rDA-1 and rDA-2
look quite similar, the entropy of the reactant in rDA-2 is found to be 5.7 units
lower at 298K than the entropy of the reactant in rDA-1. With respect to transition
states, the entropy for rDA-2 is 2.7 units higher than that for rDA-1. Thus the large
difference in the A-factor, which depends on the entropy differences in transition
states and reactants, becomes understandable.
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Figure 16. Calculated rate constants for the water assisted elimination of water
from alcohols. (top: second order rate constants; bottom: converted to first order

assuming 40% steam and P = 1 atm)

In a more general sense cycloaddition reactions, and therefore also the reverse
reactions, are known to be very sensitive to electronic effects of substituents on the
participating dienes and dienophiles (substituted olefin) (51). The rDA-1 reaction
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produces an unsaturated aldehyde as diene and the dienophile is an enol. The
opposite product distribution is found in rDA-2: the diene is an enol and the
dienophile product is an aldehyde. Such different product combinations either
stabilize or destabilize the transition state of Diels-Alder reactions and reverse
Diels-Alder reactions. More details can be found in textbooks on mechanisms in
organic chemistry (51). In this context, the important point to recognize is that
the reactive center is not a narrowly defined moiety but expands over a number of
atoms and is profoundly influenced by neighboring electron-donating or electron-
abstracting groups. Therefore retro-Diels-Alder reactions are an example for a
reaction class that cannot easily be characterized by simple rate rules. Interestingly,
although the kinetic parameters of the two reactions differ substantially, both rate
constants are similar at 1073 K (800 °C): 16000 vs. 9800 s-1. This shows that
retro-Diels-Alder reactions in the gas phase are fast and they should be considered
in the biomass mechanism development process.

To confirm our conclusion that retro-Diels-Alder reactions proceed rapidly in
the gas phase under biomass gasification conditions, we extended the investigation
to levoglucosenone, which is an important product in the cellulose pyrolysis and
might serve as starting material for the synthesis of valuable products (52). The
following retro-Diels-Alder reaction is possible:

Due to the bicyclic structure of levoglucosenone only one product is formed and
because of the steric constrains one would expect that the rate constant for this
specific retro-Diels-Alder reaction is smaller than those for the two previously
discussed reactions. However, the rate constant

is predicted to be 3000 s-1 at 1073 K, which is comparable to the rate constants for
the previous two reactions at this temperature. This demonstrates that the retro-
Diels-Alder reaction of levoglucosenone is also fast despite the steric interactions.
The large E value of the rate expression and small heat of reaction shows that the
barrier height in retro-Diels-Alder reactions does not seem to correlate with the
heat of reaction.

In Figure 17 we compare the three discussed retro-Diels-Alder rate
constants with results for additional (simpler) reactants (cyclohexene,
3,4-dihydro-2H-pyran, and 3,6-dihydro-2H-pyran). These plots confirm that
retro-Diels-Alder rate constants do not group together and thus cannot be
represented in terms of a simple generic rate estimation rule.
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Figure 17. Comparison of retro-Diels-Alder rate constants (rDA) for cyclohexene
and related reactants. Filled squares: rDA-1, filled triangles: rDA-2, filled
circles: rDA-3, straight line: rDA of cyclohexene, long dashed line: rDA of
3,4-dihydro-2H-pyran, short dashed line: rDA of 3,6-dihydro-2H-pyran.

Figure 18. Reaction pathways for the initial decomposition of phenethyl phenyl
ether.
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In summary, retro-Diels-Alder reactions represent an interesting reaction class
that might be important in the gasification process. The rate constants appear large
enough to compete with radical chemistry. The three presented examples show
comparable reactivities at 1073 K but the kinetic expressions differ drastically.
This demonstrates that rate rules of the type used throughout this study do not work
for this reaction class. Instead each reaction needs to be investigated individually
or more complex rate rules are necessary.

What Is the Initial Decomposition Step of Lignin Model Compounds?

The three reaction classes discussed above are related to the chemistry of
cellulose and hemicellulose model compounds. Therefore, we have chosen as
the final example a reaction system related to lignin chemistry. Klein et al. (53)
recommended phenethyl phenyl ether (PPE) as a model compound for the study
of lignin decomposition and Britt et al. have extensively studied this molecule
and its derivatives (15, 54, 55). Britt suggests that the decomposition of PPE
proceeds mainly via a radical mechanism. The initial radical producing step is
believed to involve breakage of the -O-CH2- bond to form the phenoxy and the
2-phenyl ethyl radicals. However, this homolysis reaction is not the only possible
initiation reaction. Other reaction pathways that warrant consideration are a 1,3-H
shift reaction that leads to phenol and styrene and a 1,5-H shift (retroene reactions)
which yields 2,4-cyclohexadienone and styrene. The three reactions are illustrated
in Figure 18. A theoretical investigation of this reaction at the CBS-QB3 level
of theory is not possible, because the reactant and transition states species are too
large (15 heavy atoms exceeds the CPU time and storage capacities available to us).
This leaves two options: either to use a lower level method to study this reaction
or to retain the well-tested CBS-QB3 method and replace PPE with a smaller
molecule of assumed comparable reactivity. Possible choices for smaller model
compounds are vinyl vinylethyl ether (VVE), ethoxybenzene, phenyl vinylethyl
ether (PVE) and others. In VVE the two phenyls are replaced by vinyl moieties.
This is motivated by the anticipation that the reactivity of a vinyl group resembles
that of a phenyl group. In the same spirit, the substitution of only one phenyl group
(the not actively reacting one) with vinyl leads to PVE. Finally, if the non-reacting
phenyl group is replaced with a hydrogen atom we obtain the possible model
compound ethoxybenzene. We have tested both options and used the CBS-4M
level of theory on all four compounds (including PPE) and compare the potential
energy surfaces (PES) of the three smaller reactants with those obtained at the
CBS-QB3 level. Qualitatively all PES are similar and thus we show in Figure
19 only those for VVE and PVE. The PESs reveal that the 1,5-H shift reaction is
the pathway with the lowest barrier. In the case of VVE, the assumed barrierless
homolysis (i.e., no activation energy other than the energy needed to overcome the
reaction endothermicity) is energetically slightly lower than the barrier for the 1,3-
H shift while the opposite is true for PVE. This difference makes sense, because
in VVE the 1,3-H shift reaction produces vinylalcohol, which is the high-energy
tautomer of acetaldehyde. The corresponding reaction for PVE yields the most
stable tautomer phenol. Hence one would expect that the transition states leading
to phenol experiences more stabilization than the corresponding transition state
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Figure 19. The PES for vinyl vinylethyl ether (top) and phenyl vinylethyl ether
(bottom): comparison of CBS-4M (dotted line) and CBS-QB3 (solid line) results.
The transition states and product channels are shown relative to the reactant
energies. Absolute uncorrected heats of formation or reaction and barrier

heights are provided in kcal/mol units (CBS-4M / CBS-QB3) .

for VVE. Figure 19 also reveals that while the relative energies (barriers at 298K
and heat of reactions) found with the CBS-M and CBS-QB3 are very close, this is
not the case for absolute heat of formation values. The deviations are particularly
large in the PVE system, which indicates that the error increases with the size of the
molecule. This also serves as a reminder that the often quoted expected accuracy
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of a model chemistry, which is derived from test sets that include mainly small
molecules, is not necessarily realistic for large species without further corrections.

A plot of the barriers for all four reactions is provided in Figure 20.
Obviously the barriers show clear structure dependence, and the assumption that
the phenethyl phenyl ether can be investigated using smaller model compounds
appears not to be valid. On the other hand, except for one barrier we see good
agreement between the barriers obtained with CBS-4M and CBS-QB3. This
suggests that for these reaction types the lower-level CBS-4M method may be
used with some confidence.

The barrier heights alone are not sufficient to decide which reaction channel
might be the most important one. Homolysis reactions have generally large
A-factors, while both hydrogen shift reactions proceed via tight transition states,
which lead to probably several orders of magnitude smaller pre-exponential
factors. In Table 2 we present calculated rate constants for the three model
compounds vinyl vinylethyl ether, ethoxybenzene, phenyl vinylethyl ether. Since
the 1,3-H shift reactions tie up 2 rotors less than the 1,5-H shift reaction, we
consistently see a more than one order of magnitude higher pre-exponential
factors for the 1,3-H migration reactions even though its 4-member cyclic
transition state structure should contain additional strain.

Even though the A-factor for the 1,5-H migration reaction is the smallest of
the three pathways, this channel will probably dominate at low temperatures due
to the large differences in the barriers. This does not mean that this reaction is
dominant in bulk systems, since once radicals are formed their reactions are likely
faster than the unimolecular reactions discussed here.

Finally, one might be tempted to conclude from the rate expressions in Table
2 that the choice of calculation method has a large impact on A-factors. Solely
based on these parameters, agreement between both calculation methods is poor.
However, one needs to take into account that these Arrhenius parameters are
derived from fits to the simple Arrhenius equation and part of the reason for the
high variability of the A-factors is that the rate constants do not follow Arrhenius
behavior. Therefore, at this stage, one should only look at the rate parameters in
the context described above, that is to see them as a reminder of the correlation
between the number of lost internal rotors and the magnitude of the A-factor.

Discussion

The starting point of this chapter was the realization that the development
of detailed kinetic biomass models presents a challenging task, even if only gas
phase reactions are considered, but that there is also reason to believe that this
challenge can be met in the near future. We presented four examples to illustrate
that in particular the enormous advances in computational chemistry and the
possibility to generate generalized rate constants of reaction classes provide
powerful tools to meet this challenge. The first example, H abstraction reactions
from alcohols not only demonstrated how well rate estimation rules work, but it
also showed how seamlessly these rate rules for oxygenates converge to those
of pure hydrocarbons. More specifically, the influence of hydroxyl groups on
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Figure 20. Variations of the barriers for the homolysis, 1,3-H shift and 1,5-H
shift reactions with model compound. Solid lines with filled symbols: CBS-4M
data; dotted lines with open symbols: CBS-QB3; squares: homolysis, triangles:

1,3-H shift, circles: 1,5-H shift reaction

the reactivity of neighboring moieties vanishes at the β-position. H-abstraction
reactions are especially suitable for rate rules since the reactive centre is generally
well localized and steric effects are often minor. Therefore it is important to verify
that the rate rule concept is also applicable to other reaction types. We selected
the unimolecular elimination of water from alcohols to address this issue. The
result: As long as the rate rule was applied to the type of reactants for which it
was developed, it performed reasonably well. The accuracy is certainly sufficient
for its use in mechanism development since a rate or sensitivity analysis can later
identify particularly important reactions, which then can be studied in greater
detail using more sophisticated and time-consuming methods. However, when the
water elimination rate rule derived for simple alcohols was applied to reactants
with more than one functional group or cyclic species, some of the observed
deviations are large. But none of these “failures” were surprises. In fact, the cases
for which the rate rules do not work well could easily have been predicted by
chemical intuition. For example, water elimination from the α,β-position of an
aldehyde group leads to a product with conjugated double bonds. This resonance
(mesomeric) effect is not considered in rate rules for saturated reactants. A new
rate rule capturing those effects is required and the failure of the original rule is
not necessarily an indication that rate rules are not reliable. In the same spirit, it is
well known that steric constrains alter the reactivity. Hence it is not surprising to
find that constrained moledules do not follow the estimates made with rate rules
developed for unstrained reactants. Again, since these “failures” are predictable
or even expected, the rate rule concept remains viable.
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Table 2. Comparison of Arrhenius rate expressions for the three mentioned
PPE model compounds. Normal font: CBS-4M, bold font: CBS-QB3. All
rate constants are in s-1 units. Rate constants for the homolysis reaction

cannot be calculated with the methods used in this study

C=COCCC=C PhOCC PhOCCC=C

Reaction Type A E A E A E

Homolysis N/A N/A N/A

1.2E+14 67.1 3.6E+13 64.1 9.1E+12 59.91,3-H shift

1.2E+13 63.4 2.5E+14 64.4 1.1E+14 61.6

2.3E+11 41.7 4.0E+12 56.6 8.7E+11 51.21,5-H shift

6.7E+11 43.6 9.2E+12 56.9 4.1E+12 52.9

While the establishment of rate estimation rule is an important tool that allows
for a quick assignment of thermodynamically consistent rate constants, it cannot
be used for all reaction systems. Retro-Diels-Alder reactions represent a reaction
class for which simple rate rules fail, because these reactions are very sensitive
to the electronic states (HOMO, LUMO) involved in this process. Substituents
bound to the reactive center can drastically change the electronic properties and
change the reactivity. Interestingly, the rate constants of the three reactions studies
are still remarkably similar at 1073 K (within a factor of 5), but this is probably a
coincidence.

The basic idea behind the use of rate rules is that we can use highly accurate
methods to study a given reaction class for small reactants and then transfer this
knowledge to larger systems. The approach of the first two examples reflected
this: we first generalized rate rules and then tested those on more complicated
reactants. The final reaction system presented in this work takes a slightly different
approach. Instead of starting small and going up, we begin with the molecule of
interest (phenethyl phenyl ether, PPE) that is too large to be treated at the preferred
level of theory. The question then arises of how can one simplify the problem
without sacrificing accuracy. We considered two non-exclusive options: (a) to
replace phenyl groups with vinyl groups (or even H atoms) and assume that the
reactivities of the smaller reactants are similar and transferable, and (b) to use
a lower level theory, validate its performance compared to a benchmark method
to ensure its reliability for model species of interests and then apply it to the
target molecule phenethyl phenyl ether, hoping that the quality of the calculation
does not change. The presented PES calculations for four phenyl and vinyl ether
showed that a phenyl group cannot simply be replaced by a vinyl group without
changing the reactivity. A part of the results can be rationalized by chemical
intuition but, for example, it was a surprise that the replacement of the phenyl in
the phenethyl moiety by vinyl led to a noticeable change in some barrier heights
when compared to PPE. The main conclusion therefore is that rate expressions
obtained for ‘simplified’ model compounds should only be transferred to larger
system with caution and if possible double-checked by lower-level theories.
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Rate estimation rules have been used for a long time to develop reaction
mechanisms and recent developments have been reviewed by Sumathy et al. (56).
However, the motivation and way rate rules are used has changed significantly
in the last one to two decades. In the past such rules were developed based on
sparse sets of experimental data, which were often only available for a narrow
range of conditions. This made it in many cases difficult to formulate very accurate
rules. The rate rules were applied out of necessity because no other resource of
kinetic data was available for many reaction classes. This has changed when
highly accurate electronic structure calculations became feasible. We now have
the luxury to base rate estimation rules of large sets of rate constants, obtained
from systematic studies over an extensive temperature range. The highest levels
of calculations yield rate constants that agree to within a factor of two or better
with the best experimental data. One of these well performing (19, 21) model
chemistries is the CBS-QB3 method, which is used in this work. Therefore we
are now in a position to generate reliable rate rules for clearly defined reaction
classes (20, 37–39). Further, these rate rules are not necessarily used because it
is the only source of data (it is just a question of time to run a calculation at a
suitable level of theory), but it is now a resource of choice, because their use has
several advantages over other resources. (1) Rate constants from rate rules are
easy to calculate and amendable to automated mechanism generating codes. (2)
Mechanisms based on these rules are easy to maintain and thermodynamically
consistent. (3) Rate rules can serve as a quick test to ensure that rate constants
from other sources are reasonable. (4) Rate rules also help to identify anomalies
and therefore improve our understanding of the factors that influence reactivity.

The increasing role of electronic structure calculations in the development of
reaction mechanisms demands prudence and constant reevaluation of the quality
of the predictions. We presented two example systems to demonstrate this point.
The popular B3LYP method seems to be very suitable in predicting rate constants
for the elimination of water from alcohols. However, theoretical methods are
always subject to the danger of obtaining ”the right results for the wrong reasons”.
We showed that this is the case for the B3LYP results as well. Fortunate error
cancellations lead to rate constants predictions that are very close to the CBS-QB3
benchmark data, but the rate constants for the reverse reaction will be orders of
magnitude off, because the heats of formation contain large errors. On the other
hand, the phenyl ether example provided evidence that less expensive CBS-4M
calculations yield PES data comparable to the CBS-QB3 method and that the use
of this level of theory is more reliable than substituting the PPE molecule with
a smaller model compound. The general conclusion is that electronic structure
methods need to be chosen and critically evaluated for each system to which they
are applied.

Summary

We have presented selected results for four reaction systems to discuss
the advantages and limitations of rate estimation rules. The results show that
such rules can play an important role in the development process of reaction
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mechanisms as long as they are applied carefully to reactions for which the
rules were developed. The use of rate rules makes the mechanism development
process faster (e. g., via automatic mechanism generation approaches), it ensures
consistency and frees up time for the kineticist to study those special reactions
that cannot be described by general rules. Some of the presented results also point
out that care is needed when choosing a calculation method. The B3LYP method
was shown to be unreliable while the CBS-4M method seems to work well for
the PES calculations of phenyl ether compounds.

The long-termmotivation of this work is to better understand thermochemical
biomass conversion. We demonstrated that one promising approach is to generate
appropriate rate rules. But the results also led to other observations, such as that
H abstraction reactions from alcohols by radicals are fast and they yield products
that will increase the gas phase reactivity. We also found that retro-Diels-Alder
reactions are fast enough to be potentially able to contribute to the chemistry
in the gasifier. In contrast, the molecular elimination of water from hydroxyl
group containing species is likely too slow to play a significant role even at high
conversion temperatures. This conclusion is also true for some multifunctional
species even though a neighboring aldehyde groupwould increase the rate constant
by several orders of magnitude if it survived the volatilization step.

While most of the results are relevant for cellulose and hemicellulose
chemistry, the final example considers proposed lignin model compounds. The
two main results of this part are: (1) It appears to be more advantageous to
rely on a lower level of theory (CBS-4M) than to replace a phenyl groups by a
smaller substituent. (2) The barrier for the 1,5-H shift reaction is significantly
lower that the homolysis and the 1,3-H shift reaction. This indicates that the
molecular channel might play a role in the initial decomposition process at lower
temperatures even though radical chemistry will dominate once a radical pool is
formed.
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Chapter 11

Multiscale/Multiphysics Modeling of Biomass
Thermochemical Processes

Sreekanth Pannala,1,* Srdjan Simunovic,2 and George Frantziskonis2

1Computer Science and Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831

2Civil Engineering and Engineering Mechanics, University of Arizona,
Tucson, AZ 85721-0072
*pannalas@ornl.gov

Computational problems in simulating biomass thermochemical
processes involve coupled processes that span several orders
of magnitude in space and time. Computational difficulties
arise from a multitude of governing equations, each typically
applicable over a narrow range of spatiotemporal scales, thus
making it necessary to represent the processes as the result
of the interaction of multiple physics modules, termed here
as multiscale/ multiphysics (MSMP) coupling. Predictive
simulations for such processes require algorithms that efficiently
integrate the underlying MSMP methods across scales to
achieve prescribed accuracy and control computational cost.
In addition, MSMP algorithms must scale to one hundred
thousand processors or more to effectively harness new
computational resources and accelerate scientific advances. In
this chapter, we discuss state-of-the-art modeling ofmacro-scale
phenomena in a biomass pyrolysis reactor along with details
of shortcomings and prospects in improving predictability.
We also introduce the various multiphysics modules needed
to model thermochemical conversion at lower spatiotemporal
scales. Furthermore, we illustrate the need for MSMP coupling
for thermochemical processes in biomass and provide an
overview of the wavelet-based coupling techniques we have
developed recently. In particular, we provide details about the
compound wavelet matrix (CWM) and the dynamic CWM
(dCWM) methods and show that they are highly efficient in

© 2010 American Chemical Society
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transferring information among multiphysics models across
multiple temporal and spatial scales. The algorithmic gain is
in addition to the parallel spatial scalability from traditional
domain decomposition methods. The CWM algorithms are
serial in time and limited by the smallest-system time-scales.
To relax this algorithmic constraint, we have recently coupled
time parallel (TP) algorithms to CWM, thus yielding a novel
approach termed tpCWM. We present preliminary results
from the tpCWM technique, indicating that we can accelerate
time-to-solution by two to three orders of magnitude even on
20-processors. These improvements can potentially constitute
a new paradigm for MSMP simulations. If such improvements
in simulation capability can be generalized, the tpCWM
approach can lead the way to predictive simulations of biomass
thermochemical processes.

Motivation and the Scales Encountered in Biomass
Thermochemical Conversion

One of the most pressing problems facing the world today is finding
sustainable, cost-effective, and ecologically friendly energy sources combined
with efficient utilization of energy. In this chapter, we describe somemathematical
and simulation tools that can be used to accelerate energy solutions not only
to keep up with the current demand, but also to meet the increasing demand,
which is expected to double by 2050 and triple by the end of the century.
Rigorous multiscale coupling tools can significantly improve the predictability
of computational simulations of the new biomass-based energy technologies.
The formalism proposed in this chapter can provide a framework for integrating
laboratory-scale experiments, various science and engineering disciplines, and
industrial-scale solutions.

Modeling the thermochemical processes in biomass conversion typically
employs a variety of approximate representations – physics-based as well as
mathematics-based – spanning from atomistic to mean-field (quantum-level,
classical atomistic, statistical mechanics, continuum, reduced-order, and
mean-field models, etc.). Figure 1 shows various representative levels of the
system for heterogeneous chemical reactors for biomass. In this figure, only
representations from kinetic Monte Carlo (KMC) and beyond are shown with the
typical applicability range of time and length scales. At the atomistic level, KMC
(1) resolves the chemical reactions, surface diffusion, adsorption, and desorption
with rate parameters determined by experiments or atomistic-level simulations.
The next higher scale, commonly referred to as the intermediate, mesoscopic
scale of approximation, involves modeling the fluid flow around the particles by
the Boltzmann Equations (2–8), while considering the mean-field equations for
reactions on the surface. One possible option for solving the fluid flow is to use
the Lattice Boltzmann Method (LBM - e.g. see the review by Chen et al. (9)). In
LBM, the Boltzmann equations are solved on lattices using pre-defined velocity
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Figure 1. Schematic of the various representation levels for a heterogeneous
chemical reactor.

directions; and in the incompressible limit, the solutions correspond to that of
Navier-Stokes equations. The next level of approximation involves modeling the
main phase using continuumNavier-Stokes equations where particles are modeled
in a discrete fashion (10–14) through various closures for heat and mass transfer
to the particles as well as chemical reactions. Subsequent levels of approximation
introduce the assumption of interpenetrating continuum for different phases
(15). At the overall systems level, we can construct reduced-order models of the
underlying dynamics based on a physical interpretation of the system (16–18) or
by using techniques like proper orthogonal decomposition (19).

Multiphysics Components for Biomass Thermal Conversion

In this section, we describe the multiphysics models for the biomass
thermochemical processes from the microscopic to the continuum scales. We
start with a multiphase computational fluid dynamics (CFD) model for the
continuum representation and provide a computational example to demonstrate
the complex interactions between the hydrodynamics, heat and mass transfer, and
chemistry. Then we explore multiphysics methods, namely the Lattice Boltzmann
Method, and Kinetic Monte Carlo that can improve the physical fidelity of
the various subcomponents used in the CFD models. After that, we describe
a wavelet-based, multiscale coupling method that can be applied to various
multiphysics components to develop fully integrated and predictable models for
biomass thermochemical processes. We conclude with a summary of the features
and offer some remarks for future work.
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Continuum Level Computational Fluid Dynamics for Biomass
Thermochemical Processes

Multiphase reacting flows are ubiquitous in the thermochemical conversion
of biomass and pervade many other applications across the entire energy cycle
including:

• Fuel production and processing: catalytic crackers, H2 production, S
removal, coal gasification, clean-up (SOx, NOx, Hg, CO2), biomass
(cellulosic) pyrolysis and gasification, nuclear fuel production

• Energy production: fuel cells, coal and biomass combustion, nuclear
reactors and separation, silicon production and coating for photovoltaic
applications, novel combustion technologies like oxycombustion and
chemical looping combustion

• Energy Utilization and Efficiency: polymerization reactors, catalytic
reactors, multiphase flow reactors used in most energy intensive
industrial processes.

To build predictive simulation capabilities for these flows, it is important to
accurately model the nonlinear, tightly-coupled interactions between the various
phases.

Despite the wide use of multiphase flow reactors, most of their development
and design have been primarily based on experiments because of the complex,
multiscale nature of the processes that control heat, mass, and momentum
transport, and the flow interactions with chemical reactions. Our current
understanding of these multiscale/multiphysics processes is limited, and direct
measurements are difficult because of the dense and erosive flow environment.
Even when diagnostic tools are available, they are often intrusive, so that they
alter the natural dynamics of the devices. Predictive computational tools can
fill the gap between the available experiments and the actual dynamics of the
multiphase flow reactors. Two primary approaches exist for highly spatially
resolved macroscale time-dependent simulations of multiphase problems (13):

a) Discrete Element Method (DEM) (also referred to as Eulerian-
Lagrangian treatment)

b) Two-fluid or Multi-fluid Model (also referred to as Eulerian-Eulerian
Treatment, Continuum model, etc.).

In the DEM, the gas-phase is modeled using single-phase equations
(Navier-Stokes equations for momentum, energy, and species conservation
equations), and the discrete phase is modeled as a collection of particles (12,
20, 21). These particles represent either an individual particle or a parcel of
particles. The particle trajectories are updated using Newton’s equations of
motion accounting for in-particle heat/mass transfer to the surrounding fluid and
particles along with explicit accounting of momentum gain and loss through
collisions. Typical reactors of interest can have billions of particles, making this
method computationally prohibitive.
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Figure 2. Schematic of fluidized bed reactor for biomass pyrolysis.

The multi-fluid approach is based on the assumption that various phases can
be represented as an inter-penetrating continuum and properties corresponding
to any particular phase are accounted through an averaged (spatial, temporal, or
ensemble) fraction occupied by that phase. Under this assumption, we can use
extensions of the single-phase formulation to solve for the multiphase system
(22–28). The biggest challenge in modeling these systems is constructing closure
relations for the interfacial processes such as drag, heat and mass transfer,
the granular stresses, and the surface and bulk reaction rates. In this section,
we use standard correlations available from experiments to model a biomass
pyrolysis process. In later sections, we outline a method for obtaining the closure
relationships through more detailed simulations and rigorous upscaling. The
results reported here are obtained using the multiphase reacting flow software
MFIX (Multiphase Flow with Interphase eXchanges, https://mfix.netl.doe.gov/)
developed primarily at the National Energy Technology Laboratory (NETL)
with partners at Oak Ridge National Laboratory (ORNL) and other institutions.
For brevity, we do not elaborate on the formulation as it is reasonably standard
and the interested reader is referred elsewhere (29, 30) for details. In summary,
the continuity equation and momentum/ energy/species conservation equations
are solved for all phases using appropriate closures for granular stresses,
interfacial drag, and heat/mass transfer coupled with the chemical reactions.
The reactor simulations provide transient spatially varying (1D, 2D, or 3D)
field data of pressure, phase volume-fractions, velocity, temperature, granular
energy/temperature, reaction rates, species mass fractions, and any other derived
quantities.
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Demonstration Problem

We simulate a biomass pyrolysis reactor similar to that of Lathouwers
and Bellan (31) to demonstrate the state-of-the-art in macroscale continuum
simulations of biomass thermochemical processes and identify the areas that can
improve the model predictability. The appeal of this problem is that extensive
experiments have been done with the biomass used for this pyrolysis reactor, and
all the chemical kinetics and thermodynamic properties needed for simulating
this system are available. The geometry (2D Cartesian) and flow conditions are
similar as in the cited paper. Figure 2 shows the schematic for this type of reactor
configuration. The original problem is simplified to have one single inlet for the
biomass instead of two, and the inlet/outlets dimensions are matched to the grid
resolution used in this simulation. In this setup, the high temperature fluidizing
gas enters the sand bed and pyrolyzes the biomass feedstock introduced through
the side inlet. Inert fluidization gas and pyrolysis products exit the domain at the
outlet. The configuration and flow parameters are given in Table 1.

The chemical reaction mechanism, reaction rates, and transport/physical
properties used in these simulations are the same as those of Lathouwers and
Bellan (31). The biomass in the reactor is decomposed into cellulose (c),
hemicellulose (h), and lignin (l). The chemical reactions for this system are:

The rate constants and activation energy for this biomass pyrolysis kinetics scheme
is provided in Table 2.

Spatial and Temporal Distributions of the Various Field Data

The macroscale simulations provide detailed field data in space and time. In
Figure 3, the gas volume fraction is plotted along with gas velocity vectors at two
different instants (~1s and ~3s) in a 5-second simulation. The qualitative features
include:

• Fluidization gas levitates particles and biomass.
• The reactor operates in the bubbling bed regime.
• The gas undergoes local acceleration and deceleration depending on the

flow of the solids.
• The flow of solids and gas is transient and highly dynamic.
• The reactor geometry causes recirculation near the left-hand top corner

of the reactor (see the velocity vectors).
• The fluidizing and product gas leave the domain through the exit.
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Table 1. Important configuration and flow parameters. Geometric details
are given in Figure 1

Table 2. Reaction rates for the various biomass pyrolysis chemical reactions

Reaction A (1/s) E (J/kmol)

K1c 2.8 x 1019 242.4 x 106

K2c 3.28 x 1014 196.5 x 106

K3c 1.3 x 1010 150.5 x 106

K1h 2.1 x 1016 186.7 x 106

K2h 8.75 x 1015 202.4 x 106

K3h 2.6 x 1011 145.7 x 106

K1l 9.6 x 108 107.6 x 106

K2l 1.5 x 109 143.8 x 106

K3l 7.7 x 106 111.4 x 106

K4 4.28 x 106 108 x 106

The char formation ratios for reaction K3 are: Xc = 0.35, Xh = 0.6, and Xl = 0.75. For more
information about the setup, please refer to Lathouwers and Bellan (31).

The gas flow is closely coupled to the spatiotemporal distribution of the
biomass, chemical reactions, and heat and mass transfer. In the following
figures, we illustrate the nature of this coupling. Figure 4 shows the biomass
mass distribution along with the gas velocity vectors at two different instants
corresponding to those in Figure 3. Here are some of the qualitative features of
this distribution:

• The gas flow is perturbed slightly to accommodate the injection of the
biomass.

• Fluidization gas and the bed particles exert stream-wise force on the
incoming biomass into the reactor.
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Figure 3. Void fraction with gas velocity vectors at two different instants (at
~1s and ~3s).

Figure 4. Biomass mass distribution along with gas velocity vectors at the same
instants as those in Figure 3.

• The biomass accumulates close to the inlet but quickly disperses and also
undergoes pyrolysis in contact with the high-temperature gas and solids.

The overall biomass distribution in the reactor is also closely coupled to
the biomass species. Figure 5 shows the mass fraction of the hemicellulose
and cellulose in the biomass at the two instants corresponding to Figure
4. The fast-reacting hemicellulose is primarily found near the inlet, while
the slower reacting cellulose makes a significant portion of the biomass all
throughout the reactor. The distribution of the various species is related to the
physical/thermodynamic/transport properties along with the chemical reactivity
as functions of local temperature. This in turn influences the variation of the
product gas in both space and time. Figures 6a and 6b show the spatial variation
of the tar gas and the product gas mass fraction, respectively. The figures clearly
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Figure 5. Biomass Composition (Note: Mass fraction of the biomass is shown
here, and that can be misleading in regions where the total mass of the biomass
is low; however, it instantly shows the relative composition of the biomass

components.)

show that at the later times, fluidizing gas bypasses through the bed to the outlet
and product species have higher residence time in the reactor. Figure 6c shows
the temporal variation of the product and the tar gases at the outlet. The product
and tar gases are still in the transient regime after 5 seconds of biomass injection;
this is a function of reaction kinetics, temperature distribution, and solids and gas
interaction.

In summary, the current state-of-the-art macroscale continuum simulations
can provide spatiotemporal variations of solids, biomass, gas, solid species,
and reaction rates. Such simulations have been recently employed to study
detailed 3D simulations of coal gasifiers by using hundreds or even thousands of
supercomputer processors (32).

However, reaction kinetics and heat/mass transfer formulations in continuum
multiphase flow models need to be determined experimentally or by multiscale
upscaling of lower length- and time-scale models. These models can include the
DEM for accurately resolving particle-particle collisions, LBM for obtaining the
critical parameters related to the drag, heat and mass transfer, KMC for obtaining
the chemical kinetics (see Figure 1). In the following sub-sections, we will
describe how we can use different methods for deriving these closure relations.
We use the LBM for resolving the flow over the solid particles and obtaining the
heat and mass transfer closures, and we use the KMC for the chemical reactions
occurring on the surfaces and inside the pores of a biomass particle for closures of
the local chemical reactions. In the next section, we describe how these quantities
can be upscaled and how macroscale simulations can be linked to lower length-
and time-scale models where scale separation is not possible.

Lattice Boltzmann Method (LBM)

The LBM solves the Boltzmann equations on discrete lattices using
pre-defined velocity directions and magnitudes for the fluid particles. In the
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incompressible limit, the LBM solutions correspond to the solutions of the
Navier-Stokes equations. Because of its discrete representation, the LBM is
applicable in cases where the Navier-Stokes differential equations for fluid flow
fail under conditions of large Knudsen numbers (ratio of mean free molecule
path and the characteristic length scale) (33). Such conditions are generally
quite common in energy conversion devices and in systems where the mean free
molecular path is similar to the geometric constraints. The classical LBM is
most applicable to large Knudsen number flows with low Mach numbers (ratio
of the particle speed to the speed of sound in the medium). Extension to large
Mach numbers is possible through LBM modifications or by using dissipative
pseudo-particle dynamics methods.

A brief introduction to the LBM follows. More details are available in the
review by Chen et al (9). The LBM solves the lattice Boltzmann equations given

in the following format (34): , where ,
i=1, and b is the probability distribution of finding a fluid particle at lattice site
at time t, moving along the lattice direction given by the discrete speed .

Here, b is the number of discrete populations associated with each node P of
the computational grid. The left side of the above equation corresponds to the
molecular streaming, while the right side represents molecular collisions through
a single-time relaxation towards local equilibrium on a typical time scale τ.
This local equilibrium can be represented in terms of lattice sound speed, and the

fluid density ( ) and fluid velocity ( ) are calculated. To recover
fluid dynamic properties, t mass, momentum, and energy must be conserved. LBE
discretized with a particular choice of time-difference scheme will yield a finite-
volume formulation, which can be solved for each node at every time step. Wall
boundary and inlet-outlet conditions are applied to simulate problems of interest.
Details of discrete speeds, discretization and boundary conditions are available in
the cited references and are not discussed here.

Chemical species can be modeled by scalar equations and convection,
diffusion, and reaction terms. A common approach is to track population
densities corresponding to each species. This ensures seamless integration
of the LBM fluid-flow simulations with those of the species. However, this
also burdens the computational effort tremendously as the number of chemical
species increases. The recently developed Lax–Wendroff scheme can be used to
model multicomponent fluid transport (and reaction) within an LBM simulation
framework (5–7). Extending the LBM to thermal flows is not straightforward as
the number of kinetic moments to be included to accurately model heat fluxes
is very high (35). Alternative approaches (36) have been proposed to eliminate
the need for carrying an additional distribution function for temperature, thereby
avoiding the computation of higher-order moments.

The LBM is inherently computationally expensive both in terms of floating
point operations and storage. The method requires a small time increment
for maintaining computational stability and High Performance Computing
(HPC), which is usually a prerequisite for realistic LBM simulations. The LBM
consists of two main steps: (i) propagation (left side of LBM equations), where
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Figure 6. a) Tar gas mass fraction, b) Product gas mass fraction and c) temporal
variation of the product and the tar gases at the outlet.

fluid-particle distribution moves along the lattice bonds to the neighboring lattice
nodes; and (ii) collision and forcing terms (right side), where fluid particles on the
same node collide and adjust velocities to conserve mass and momentum. The
interaction between the nodes in the lattice is required only in the propagation
step. In HPC implementations, when different parts of the computational domain
are assigned to separate computer processors, the propagation step can move
fluid packets between the processors and, therefore, require message passing or
update of the shared memory location. Previous HPC research on implementing
the LBM has indicated that minimizing the computational load imbalance was
more important than minimizing the communication imbalance. The parallel
implementations to date take advantage of the special locality for updating. They
also employ standard static domain decomposition strategies, such as, slice, shaft,
box, and Orthogonal Recursive Bisection (ORB), with addition of ghost layers at
the sub-domain boundaries. For many practical applications, such an approach is
not sufficient, as the number of impermeable nodes, which do not contribute to the
computational load, can be significant. Sparse representation of the conductive
phase of the lattice (37) and graph partitioning approaches are then necessary to
reduce the overall memory requirements and distribute the computational load
evenly among processors.

The LBM method described here, coupled with heat and mass transfer,
can be used to generate better closures for the heat and mass transfer just as
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LBM has been extensively used for constructing drag correlations (38, 39). Full
Navier-Stokes of granular assemblies based on Immersed Boundary Methods (40)
also offer alternate means to obtain such detailed data to construct more accurate
correlations for drag and heat and mass transfer.

Kinetic Monte Carlo

Monte Carlo (MC) (Stochastic) methods have been used in a wide variety
of scientific and non-scientific disciplines, such as materials science, nuclear
physics, chemical reactions, sintering, financial markets, and traffic flow, to
name a few. MC methods approximate solutions to mathematical problems
by statistically sampling computational experiments. The MC method has
been widely used in materials science to determine equilibrium structures or
thermodynamic properties. However, MC methods have also found application in
non-equilibrium and kinetic phenomena. For any kinetic phenomenon, the phase
space must be explored along a Markov chain such that each state is accessible
from the preceding state along the chain to preserve balance. Thus, the two main
steps in a KMC algorithm are: (i) identification of all the possible events that can
occur and (ii) determination of the probabilities at which these events can occur.

A short description of the KMC method for a simple 1st order reversible
reaction system (A ↔ B) is shown below for illustration (additional details can
be found elsewhere (41, 42). In this case, two possible reaction events A → B
and B → A (R1 and R2) can happen with reactions rates k1 and k2, respectively.
In the case we have n events, we have Ri,i = 1,2,.....,n. The system contains NA
molecules of A and NB molecules of B, with N = NA + NB. We define ri as the rate
at which an event of type Ri takes place. In this case, r1 = k1NA and r2 = k2NB.
Let τ be the time such that no reaction occurs between time t=0 and t=τ. One can
now construct a stochastic differential equation whose solution is

where α1 is a uniformly distributed random number between zero and unity. Once
a reaction event occurs, the probability that it is of type Ri is

The reaction selection algorithm can be easily implemented by introducing another
uniform random number (α2) in the interval (0, 1) and dividing it into i segments.
An event Ri will take place when,

.
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In summary, at any given state all the reaction rates must be calculated
to yield τ based on the first uniform random number. An event i occurs based
on the probability of each event and the second random number and yields the
concentrations of the new state. This procedure is repeated for a desired time. The
reaction rates (ki) and reaction steps can be provided by more detailed atomistic
simulations (43–49).

Multiscale/Multiphysics Coupling Methods with Examples

We now describe a general formulation for interfacing two different length
scale and physics methods for simulating reactive flows. The first, the microscale
KMC reaction model, deals with microscopic-length scales and is restricted to
operating on the boundary of the macroscopic, LBMflowmodel. The microscopic
KMC domain has one less dimensionality than the macroscopic LBM space. Both
the KMC and LBM methods are based on probability density functions and the
local rules and thereby have common structure over which the coupling can be
implemented in a consistent and formal way. The fine-scale information captured
in the KMC simulations is transferred to the thermohydrodynamics of the LBM
through a modified non-reflecting Neumann boundary condition (BC), similar to
the overlapped Schwarz alternating method. The coarse-scale LBM can act as
a Dirichlet BC constraint for the micro-scale KMC simulation. For isothermal
LBM, the method is simplified, as the Dirichlet BCs can be used on both sides.
The approach can be extended to coupling LBM with molecular dynamics (MD)
and requires additional processing of the MD statistics to match the probability
density functions in both schemes. The aforementioned multiphysics/multiscale
method falls into the general class of heterogeneous multiscale methods (HMM)
(50–53).

The CWM for Coupling Multiscale/Multiphysics Components

The CWMmethod can couple different physics models operating at different
spatiotemporal scales (54–57). The formulation is applicable to various methods
in many scientific and engineering areas, and we describe it here within the context
of coupling from small spatiotemporal scales (KMC) to larger ones (LBM).
Within a multiscale framework, we are typically interested in macroscopic or
mesoscopic processes described through state variables such as concentrations
of reactants, products, intermediaries, denoted separately or collectively as U. A
global macroscopic grid-based scheme is used for calculating U. Macroscopic
data can be estimated from a microscopic model, where the state variables
corresponding to U are denoted as u (50–53).

In this case, the CWM method can fulfill two purposes: (i) to project u to U
as needed by the LBMmethod and determine how the union of the spatiotemporal
scales modeled by the KMC and LBM affects the entire process; and (ii) to make
predictions on and recommendations for improving the efficiency of the studied
process. Purpose (ii) is addressed in a subsequent subsection.
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The CWM method is based on wavelet transform mathematical theory. In
one dimension (extendable to higher dimensions), the wavelet ψ(x) transforms a
function f(x) according to

The two-parameter family of functions, is obtained from
a single one, ψ, through dilatations by the factor a and translations by the factor b.
Given the wavelet coefficientsWf(a,b) associated with f, it is possible to construct
the representation of f at a range of scales between s1 and s2 (s1 ≤ s2) through the
inversion formula

(cψ being a constant). By setting s1 → 0, s2 → ∞, f is reconstructed. It is this
representation between s1 and s2 that allows projections from u to U and from U
to u (both needed for purpose (ii)).

Figure 7 shows the schematic of the CWM construction process. The wavelet
transform of a state variable u/U in two dimensions, i.e., x, t, for KMC, and X, T
for LBM, includes a transform in the x/X direction, a transform in the t/T direction,
and one in the x-t/X-T direction (58). Because the scales of U, X, and T in LBM
are larger than the scales of u, x, and t in the KMC, the wavelet transform of U
fills in different sub-matrices of the CWM as compared to the wavelet transform
of KMC. Before describing the process of constructing the CWM in further detail,
we emphasize that the CWM method is general enough so that it does not require
an independent interaction along scales in a HMM sense. In fact, the CWM could
be used effectively even if the LBM and KMC were used independently of each
other. The scale interaction provided by the CWM is analogous to global error
propagation and control in Schwarz methods using the combination of fine and
coarse solvers.

CWM for Projection Operations in Time and Space

As illustrated schematically in Figure 7, state variables U from LBM are
transformed using wavelets (red-dotted line) and the resulting wavelet transform
coefficients fill in parts of the CWM operator, i.e., those parts that correspond to
the scales used in LBM scales or the fine scales of the CWM (lower left corner),
as pointed out by the black arrows. Similarly, corresponding state variables u
from KMC are transformed using wavelets (blue-dotted line); and the resulting
wavelet coefficients fill in the rest of the CWM corresponding to the fine scales
of the system (all except the lower left corner), as indicated by the black arrows.
More importantly, for specific times (snapshots) the CWM allows for spatial
projections along scales (59), or, when time is a variable, for spatiotemporal
projections along scales (54). In the former case, for studying a boundary as in
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Figure 7. Schematic detailing the coupling of KMC with LBM.

Figure 7, the CWM is the result of wavelet transforms in 1-D (x/X, u/U, scale),
while in the latter case it is the result of wavelet transform in 2-D (x/X, t/T, u/U,
scale). If the boundary is two-dimensional, i.e. x, y in KMC and X, Y in LBM,
the dimensionality of the CWM increases accordingly. In all cases, the CWM
is indeed a wavelet transform, yet not constructed from a single data base, but
compounded from two data bases, one resulting from LBM and one from KMC.
The construction process is statistical (transfer of statistics) and the outputs from
LBM and KMC in the form of probability densities fit the CWM construction
process ideally. Inverting the CWM is possible under certain conditions of
stationarity or quasi-stationarity (56, 57).

The KMC and LBM processes are related to each other, thus an upscaling
projection operator denoted by Q is such that Qu = U. Similarly, for downscaling,
a projection operator denoted by R is such that RU = u. If the complete CWM
is given, Q and R can be easily obtained by straightforward application of
the wavelet transforms, given above. For implementing the HMM process, a
projection operation Q̅u = U can be used, where Q ̅ denotes an approximation of
Q. Various alternatives for obtaining Q ̅ can be employed: (a) using the complete
CWM from previous time steps; (b) using an approximation of CWM constructed
from current time-step data of KMC and previous time-step data of LBM; or (c)
using locally large enough KMC simulations to allow representation at the spatial
scales of the LBM. For efficiency of the projections and error control, several
spatiotemporal scales between those of the KMC and LBM should overlap (54,
59).

Using CWM for Making Predictions and Recommendations

The CWM allows us to either study U at macro spatiotemporal scales or even
zoom in and observe “flashes” of relevant microscopic processes. The predictive
capability remains at the final product, i.e., the macro scales, unless a mathematical
method is devised for the concurrent description of state variables at all scales
involved; and the CWM is efficient in that. Predictions have been reported for
different physical problems (54, 59).
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The CWMmethod concurrently represents the state variables of interest at the
spatial and temporal scales that are the union of those handled by the LBM and
the KMC. Its predictive capabilities are inherently multiscale, because it contains
information about the studied process at all available scales. This allows us to
study interactions along scales, both spatially and temporally, and thus predict
how to improve the efficiency of the process by altering parts of the micro or
meso parts as needed. For example, in reactive flow problems, it is not clear
how the microscale chemical reaction rates affect the transport of reactant species
at the meso/macro scales. The CWM (with time scaling included) can provide
the mathematical details of such interactions, e.g., by studying the energy of the
wavelet transform, available through the CWM, or other information measures on
the concentration of reactants. If such measures peak at small spatial and temporal
scales, it indicates that the process is inefficient – reactants do not “diffuse” to
large scales effectively. If the energy of the wavelet transform peaks at large
scales, the process is again inefficient because reaction rates at microscales are
not used to their full capability in terms of “diffusing” reactants to the large scales.
A more or less constant distribution of the wavelet transform energies (or any
other relevant information measure) would imply process efficiency. Moreover,
the CWM method would indicate how this can be achieved, e.g., by formulating
better catalysts to change the chemical activity or by altering the macroscopic flow
conditions. This technique can potentially provide a model-based design tool for
catalysts rather than the present day combinatorial techniques used by catalyst
manufacturers.

Time Integration of KMC-LBM Coupling

The LBM and the KMC operate on widely disparate time scales. Thus,
the entries in the CWM need to be evaluated at sub-intervals of pre-determined
duration and location so that the right-hand side of the LBM governing equations
can be updated as few times as possible. The implicit assumption is that the
chemical reactions do not drastically affect the evolution of the macroscopic
solution. Separation of processes into fast and slow allow one to work within
the framework of Fast-Slow Splitting variation of the Multiple Time Stepping
(MTS) and Spectral Deferred Correction (SDC) methods (60). The separation of
the time scales (processes) for a large class of problems can be formally written
as a summation of forcing terms on the RHS in the LBM corresponding to slow
and fast dynamics, i.e.,

The fast dynamics are evaluated by the KMCmethod, whereas the slow dynamics
correspond to the classical LBM terms. In the MTS framework, the time
integration can then be formally written as a composition:

where and denote numerical integrators of slow and fast processes,
respectively. This approach is known as the Impulse Method because the slow
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modes are evaluated in an impulse fashion only at the end of integration intervals,
whereas the fast modes are evaluated in many sub-intervals in between. The MTS
methods are quite elegant when the Hamiltonian of the system can be explicitly
defined and the solution method can exploit its symplecticity. In cases when the
combined methods include automata, a universal description (i.e., Hamiltonian)
is not compatible with the character of the underlying methods. The LBM is
not derived from a discretization of the Navier-Stokes differential equations.
Instead, it is a space-, momentum- and time-discretized automata version of the
Boltzmann transport equations with an objective of incorporating the statistical
physics nature of fluids into the hydrodynamics solution. The collision rules do
not perform Newton dynamics simulations, and they are only constrained by the
local conservation and by the requirement of rotational symmetry (isotropy).

In the KMC/LBM coupling, the natural partition into fast and slow processes
already exists along the line of methods separation (i.e., LBM and KMC), and
the CWM mapping can be explored for the definition of further refinement of the
process separation within KMC. The separation depends on the physical processes
involved. It has been shown that increasing the sampling frequency N leads to
“artificial resonances,” so increasing the N does not necessarily lead to a higher
accuracy. The optimal choice of the integration increments (N sampling) depends
on the problem characteristics and the splitting strategy. Necessary conditions for
stability and symmetry need to be maintained.

The SDC methods improve the accuracy of the numerical solutions by
reducing the errors from the operator splitting (i.e. decoupling) and integration
by iterative approximations of the solutions and applying error corrections during
the integration process. In the case of two explicit time integration methods,
the corrections involve restarting each method with different constraints and
integration of source terms. The evolution of solution space associated with
dominant CWM factors can be used to restrict the extent of computational effort,
which is particularly useful for problems with multiple species and reactions. The
CWM matrix from the previous time step can be used to interpolate provisional
solutions and error correction. Numerical experiments are necessary to determine
the optimum integration strategies.

Fractal Projection for Catalytic Surface

Reactive processes on catalytic surfaces are influenced by many local surface
topological and chemical morphology-related factors such as limitations on
mobility of adsorbed molecules, localization of reactions, adsorbate-induced
surface restructuring, surface transport, to name a few (61–63). It has been shown
that fractal surfaces can affect the dynamics of reactions and the steady state
(64) of the system. Processes that occur on smaller length scales can have larger
reaction probability. Residence and reaction times also depend on the distribution
of active sites and their conformity to the surface morphology. Fractals on the
surface are bounded below by interatomic distances, and the upper cutoff, ξ, is
determined by surface processing. This allows us to consider the fractal surface
as consisting of repeating units of size proportional to the upper self-similarity
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cutoff. This, in turn, replaces self-similarity by the translational invariance of
order ξ.

Time Acceleration with Time-Parallel Compound Wavelet Matrix Method

Even though spatial domain decomposition, parallel computing, and CWM
can provide significant computational gains, the sequential nature of time still
mandates that the time integration evolve in consecutive time increments. This
constraint is compounded by high spatial resolution of lower scales and a
commensurate reduction of the stable time increments through Courant criteria.
Time parallel (TP) methods have been introduced to alleviate this problem. The
key idea of the TP algorithms is to use different time propagators distributed
across phase space and iterate on their evolution until convergence. In a case of
two propagators, termed here “coarse” and “fine,” in each global iteration, one
obtains a temporally coarse solution of the problem; and then at several temporal
“nodes” along the coarse solution independently instantiates fine-grained temporal
simulations. The fine simulations correct the coarse counterpart, and the process
is repeated, in a predictor-corrector sense, until convergence is achieved.

The method is very efficiently parallelizable and conceptually simple, clear
advantages for utilizing supercomputing resources. Figure 8 shows a schematic
of the TP solution process; the fine solutions are iterated in coordination with the
coarse one, in a predictor corrector sense, until satisfactory convergence occurs.
The TP algorithms are described in detail (65–67) and references cited therein.

One obvious drawback of this method is that the coarse and fine simulations
interact only at the temporal “nodes” where the fine simulations instantiate, in
effect localizing the errors. In addition, the fine simulation has to run for the
entire duration of the assigned time interval. These may impede convergence
and miss features of the response that depend strongly on the initial and boundary
conditions. A newly proposed framework, the Time Parallel Compound Wavelet
Matrix (tpCWM) method (68) combines the TP and the CWM methods to make
multiscale/multiphysics simulations computationally scalable in time and space
realms. To illustrate the main tpCWM idea, we consider the CWM method as a
strictly time-scaling method within one time interval of the TP method. Figure
9 shows the CWM operating on temporal scales within the context of “coarse”
and “fine” methods as in the TP method. By wavelet compounding of the small-
scale information from the fine solution and the large-scale information from the
coarse method, an improved temporal response is obtained that, in addition to
“correcting” the coarse trajectory, also incorporates small-scale information from
the fine method.

In tpCWM, a coarse scale solution is iteratively corrected by the CWM, which
compounds the fine and coarse solutions for the considered time interval. The
computational savings, over the full fine solution (in terms of the real time required
to perform the simulations) can reach several orders of magnitude, depending on
the number of parallel processors available, the number of iterations required for
convergence, and the efficacy of the CWM process. The computational savings
compared to the conventional TPmethod without a CWMupscaling can also reach
several orders of magnitude, depending on the number of iterations required by
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Figure 8. Schematic of the TP method. The fine method instantiates at several
temporal “nodes” typically for a period δt that covers time until the next node.

Figure 9. Schematic of temporal CWM. The fine method is employed for a
fraction of the coarse method, and the CWM reconstruction updates the temporal

statistics as well as the mean field.

the TP method. Given the current computer processor design path, it is likely to
have millions of processor cores on exascale parallel computers, which makes the
tpCWM algorithm even more appealing for accelerating multiscale simulations.

The tpCWM Method for a Simple Chemical Process

We now apply the tpCWM method to a simple chemical process with
oscillatory trajectory and analyze the method’s convergence and scalability in
time. Applying the tpCWM method to a specific biomass thermomechanical
process requires proper simulation of the underlying processes, but the overall
tpCWM approach remains conceptually the same as for this simple case. In TP
as well as in CWM, the coarse method can be a deterministic solution at coarse
discretization of the relevant rate equation; and the fine simulations can be a KMC
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method. The benchmark solution, for testing the method, can then be the solution
of the KMC that was run over the entire interval of interest.

Let a and b denote two time-dependent concentrations of the two
intermediates of interest for a system. At steady-state, the respective
concentrations are a0,b0, respectively, and deviations from steady state are denoted
as A = a − a0, B = b − b0, respectively. Processes governed by (1) are examined,
where coefficients κij are rate constants. Processes (1) have applications in
many fields, including chemical, biological, biochemical systems, heat flow, and
membrane vibrations. [Noyes and Field (69) and references therein for example].

Two cases of (1) have been examined. In the first case, −κ11 = κ12 = −κ21 = κ22
= κ = const., and (1) yields an exponential decay/increase solution forA andB (e.g.,
modeling a unimolecular reversible chemical reaction). The second case, κ11 = κ22
= 0, −κ21 = κ12 = κ = const yields oscillatory solutions for A, B. In the following,
the tpCWM is presented with respect to the oscillatory case. The formulation and
results for the exponential case are qualitatively similar, yet the tpCWM converges
to the correct solution even faster than for the oscillatory case.

The fine model uses the KMC algorithm for solving the kinetic evolution (1)
for the deviations from the steady state, i.e., A, B. The rate constant κ (inverse time
(t) units) is taken to be equal to 0.001 (sec-1), and the times required for one unit
change in the value of A, B for the oscillatory case are expressed as:

where R1 and R2 are independent, uniformly distributed random numbers between
zero and unity.

At any time in the simulation, an event that requires the least time is the
one that will occur. Thus, at every KMC iteration step, two random numbers are
generated, i.e., R1,R2, and t1,t2 are evaluated based on (2). The minimum of t1,t2 is
the time increment associated with the selected unit change event. For initial value
for A equal to zero and for B equal to 10,000, Figure 10 shows the time evolution
of species A obtained by KMC for the given time interval and will serve here as a
benchmark solution to the reaction problem. The closed-form solution to (1) for
A and the values given above is A(t) = 10000sin(κt). This solution is the same as
the ensemble average of the benchmark, but lacks any short-scale oscillations.

The coarse model uses a deterministic algorithm for solving the kinetic
evolution for A, B. The oscillatory case for finite difference discretization using
the first order Eulerian scheme yields, with Δ denoting finite difference,
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Figure 10. Benchmark solution of the time evolution of species A obtained by
KMC.

Figure 11. Time evolution of species A obtained from the coarse solution and
comparison to the benchmark solution.

We intentionally selected the first-order Eulerian scheme because its finite
difference error increases as time t increases and, eventually, diverges. Yet, despite
the divergence, it will be shown that the tpCWM will be able to converge to the
correct solution quickly. The difference equations are solved iteratively, and A and
B are updated for each time step. Of course, the purpose here is to examine the
stability of the tpCWM; thus, large time increments are used to obtain a relevant
solution from the coarse model. In an attempt to keep the number of time steps
in the coarse method small, a time increment of 175s is used. The corresponding
plot is shown in Figure 11; a total of 60 time steps are used in the coarse method.
In other words, 60 TP processes (or parallel processors) are used in each time-
integration case.
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Figure 12. (a) KMC, (b) CWM runs, np=60, at each node for the first iteration.
Part of the time domain is shown for clarity.

Figure 13. tpCWM solution, np=60, at iterations 1 (a), 2 (b), 3 (c). The CWM,
for a particular time interval is shown in (c) (inset) depicting the relevant

fluctuations. Also, the benchmark solution is shown, towards which the tpCWM
iterations converge.

tpCWM Solution

A tpCWM algorithm to this reaction problem calls for instantiation of CWM
solutions at the beginning of each of the time steps from the coarse method, called
nodes. For the present case, the number of nodes is considered to be equal to
the number of TP processes (number of processors) denoted as np. Each KMC
simulation runs, for each iteration, for a portion of (tpCWM) or the entire (TP)
time period between nodes, equaling the time increment of the coarse method.
The details of the TP iteration algorithm can be found elsewhere (65).

The most important difference between the TP and the tpCWM is that the
CWM compounding of the coarse and fine solutions within time intervals allows
for the fine solution to only run for a fraction of the time until the next node. This
fraction, denoted as f was herein chosen to be 1/16. Figure 12a shows the KMC
results at each node for the first iteration. The same value for f, 1/16, is used at
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Figure 14. Factor of computational savings, X, as a function of the ratio r and
the fraction f.

the each iteration, and the KMC results are used in forming the CWM for the each
node and iteration. Results for the first iteration are shown in Figure 12b.

Figure 13 shows results from the tpCWM process at three iteration steps,
where, similarly to the TP, it can be seen that it only takes a few iterations for
this problem to converge.

Computational Efficiency of the tpCWM Method

The tpCWMmethod offers significant computational savings compared to the
classical TP. In the TP, the KMCwould run for the entire time interval for every TP
iteration, and the computational savings over the complete KMC solution would
come solely from the use of parallel processors. In the tpCWM, however, the KMC
runs for only a fraction of time interval. This saving in computational time occurs
at every TP iteration, so that, for example, for f=1/16 and seven iterations, the
computational savings of the tpCWM over TP is approximately 7*16~112 times.
The CWM calculations in the tpCWM reduce this factor but not considerably. In
the examples presented previously, the actual saving factor was about 95 instead
of 112.

Let ni denote the number of iterations required for convergence. The ratio r
of TP processes over ni, denoted as

is approximately 60/3, for np=60, of the tpCWM example presented above.
Figure 14 shows the factor of computational savings X, defined as the ratio of

computational time required for the benchmark method (pure KMC) over time
required for the tpCWM, as a function of r (number of processors/number of
iterations) and f (fraction of KMC time used in each assigned time interval). Three
orders of magnitude in X can be achieved by r in the range of 20 and f in the order
of 1/64.
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It is important to determine how the ratio r changes as the number of TP
processes np increases. If r remains the same, i.e., is independent of np, then
increasing np merely implies that efficiency is increasing proportionally to r.
However, if r increases with np, this will imply that the efficiency of tpCWM
increases further with an increasing number of processors, a clear trend in parallel
processing machines. Based on results from using 30, 60, and 90 TP processes
np, the required number of iterations was tracked, and they were 6, 4, and 3,
showing that the number of iterations remains low and even becomes lower as np
increases. Clearly, the tendency for r to increase with increasing np, or even stay
constant and equal to a small number furnishes an advantage of the tpCWM.

The tpCWM can be extended to other multiphysics/multiscale problems,
especially to the biomass thermochemical conversion processes. The tpCWM
can incorporate different implementations of fine and coarse methods described
in this chapter and efficiently couple surface reactions in the porous biomass, the
heat and mass transfer from the heterogeneous biomass material, with the overall
macroscale transport.

Conclusions and Future Work

Biomass thermochemical processes are inherently multiscale phenomena,
both spatially and temporally, yet the lack of adequate multiscale methods led
to an extensive use of loosely coupled, macroscopic continuous methods that do
not capture the details necessary to model the process in a predictive manner.
Incorporating fine-scale simulations in the macroscopic models is a challenging
goal, and many hurdles need to be overcome. The CWM method can help
overcome some of the difficulties.However, it may not be enough to bridge the
gap between microscopic and macroscopic methods that operate at industrial
timescales. The combined TP and CWM method offers a viable alternative to
incorporating fine-scale information into the coarse spatiotemporal scales useful
to the biomass conversion industries. Simulation at scales of the industrial interest
calls for (a) detailed simulation of thermochemical processes at fine scales that is
consistent with macroscopic models to some acceptable degree; (b) identification
of process intervals, spatial and temporal, over which the tpCWM method can be
applied; and (c) effective computational acceleration with suitable load-balancing
strategies using contemporary massively parallel computers. Even though the
above goals may be achievable in the future, we note that coupling of scales
unexplored previously may reveal new issues not captured by models used for
lower scales. This would require renewed modeling at either larger scales or
smaller, or both, in a coupled fashion. Such a predictive multiscale tool can
dramatically alter how future biomass thermochemical devices are designed as it
would allow us to optimize the processes at the microscale while accounting for
all the macroscopic effects of the device.
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Chapter 12

Computational Fluid Dynamics Modeling of
Biomass Gasification and Pyrolysis

P. Pepiot,* C. J. Dibble, and T. D. Foust

National Renewable Energy Laboratory, Golden CO, 80401
*perrine.pepiot@nrel.gov

Biomass thermochemical conversion holds great promise
for producing biofuels and will play a determining role in
displacing petroleum-based fuel consumption toward renewable
sources. Empirical approaches have shown severe limitations
in their capability to understand and control the conversion
processes. However, without the ability to accurately predict
and optimize thermochemical conversion performance,
large-scale commercialization of these systems is severely
compromised. In this context, Computational Fluid Dynamics
(CFD) appears as an essential tool to better comprehend the
complex physical and chemical processes involved, paving the
way toward efficient control and design strategies. After a brief
description of the numerical models needed to simulate biomass
gasification and pyrolysis, the contributions of CFD to process
design and optimization are detailed. Finally, the state of the art
in terms of numerical models for the dense, reactive particulate
flows typically found in conversion processes are reviewed.
Shortcomings of existing CFD simulations, especially in terms
of validation and predictability, are examined; and directions
for future research based on the progress of CFD in other fields
are suggested.

Introduction

Currently, crude oil is almost exclusively used for producing transportation
fuels worldwide. In fact, more than 97% of transportation fuel needs are met with
crude oil (1). To reduce our sole dependence on crude oil to meet transportation

© 2010 American Chemical Society
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needs, and to limit the environmental impact of crude oil usage such as greenhouse
gas emissions, many countries and regions are rapidly developing and deploying
biofuels and have set some very aggressive goals for near-term deployment. For
example, the EU has mandated that biofuels account for 10% of transportation fuel
use by 2020 (2). Furthermore, the United States has set both a near-term goal of
a 20% reduction in 2007 gasoline usage by 2017, to be met predominantly with
increased biofuels production (3), as well as a long term “30x30” goal to displace
30% of the 2004 gasoline demand with biofuels by 2030 (4).

Although many countries are rapidly deploying biofuels, this first wave of
development focuses almost exclusively on first-generation biofuels technologies
that utilize food- or feed-based feedstocks. Brazil and the United States are rapidly
moving forward with developing and deploying ethanol technology, with Brazil
using sugarcane as the feedstock and the United States using corn. Brazilian sugar
cane ethanol is generally regarded as having little to no impact on primary food
supplies and prices, because Brazil has increased its sugar cane production to
more than offset the amount of sugar diverted to ethanol production. However,
food supply and price concerns have been raised about corn ethanol production
in the United States (5), because corn grain is an important food and animal feed
commodity. The EU, the largest biodiesel producer, uses rapeseed oil as its main
feedstock and again concerns about fats and oils supplies and prices have been
raised over the diversion of rapeseed oil to biodiesel production.

Because of these concerns and the overall limitations of first-generation
biofuels technology primarily due to feedstock restrictions, advanced or
second-generation biofuels technologies, based on sustainable, non-food sources
of feedstocks, will be required to meet aggressive volume goals for biofuels
deployment (6). Several different technologies exist (6–8) for converting
cellulosic biomass to biofuels. The predominant differentiation between the
conversion options is the primary catalysis system (9). Biochemical conversion
routes rely on biocatalysts, such as enzymes and microbial cells, in addition
to heat and chemicals, to convert biomass first to an intermediate mixed sugar
stream and then to ethanol or other fermentation-produced biofuel. Conversely,
thermochemical conversion technologies rely on heat and/or physical catalysts
to convert biomass to an intermediate gas or liquid, followed by an additional
conversion step to transform that intermediate to a biofuel. Thermochemical
conversion processes will play a determining role in the development and
deployment of second generation biofuels, because they offer significant
advantages, such as the ability to robustly handle a wide range of feedstocks,
and they are capable of producing various types of transportation fuels. Biofuels
production via themochemical approaches shows great promise for being
economically competitive with conventional petroleum derived gasoline and
diesel (4) in both the near and long term. Additionally, the economics of
biofuels production via thermochemical approaches compare favorably with the
economics of other biomass-to-biofuels conversion routes, such as biochemical
approaches (10).

Thermochemical conversion technologies for producing transportation fuels
can be categorized as either gasification or pyrolysis (11). Gasification is a
complete depolymerization of biomass with limited oxygen at high temperatures,
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typically > 850°C, to a gaseous intermediate synthesis gas (syngas) consisting of
H2 and CO. A review of the existing types of gasifiers and their relative advantages
and disadvantages for transportation fuel production is provided by Spath and
Dayton (12). Pyrolysis, on the other hand, is the milder depolymerization
of biomass producing a liquid intermediate (pyrolysis oil or “bio-oil”) in the
absence of added oxygen at lower temperatures, typically in the range of 400°C
to 650°C. Detailed reviews of pyrolysis techniques and their current technical
status are provided by Bridgwater and Peacocke (12) and Czernik and Bridgwater
(13). Although there are a number of gasification and pyrolysis processes under
development (14), fluidized bed processes are attractive for converting biomass
(15) because they are easily scalable, very robust, and do not require significant
size reduction of the feedstock, which can be problematic for biomass.

Current State of Development and Research Needs

Driven by a worldwide desire to develop second-generation biofuels and the
high potential offered by thermochemical conversion technologies, considerable
progress has been achieved for both gasification and pyrolysis routes for biofuels
production (16). Despite these advances, some technical challenges still need to
be solved to enable large-scale industrialization of these processes (17).

One of the big challenges associated with either fluidized-bed gasification
or pyrolysis is the high variability in reactor performances, noticeably increasing
the risks associated with the development of industrial-scale facilities. For
example, Figure 1 shows the hydrogen-to-carbon monoxide ratio as a function of
the operating temperature reported in the literature for several existing biomass
gasification fluidized-bed reactors. Hydrogen-to-carbon monoxide ratio is a
critical output parameter for liquid fuel synthesis, and still, variations of nearly an
order of magnitude are observed, which cannot be explained by the current state
of understanding of these systems.

Another challenge is the issue of undesirable tar production. In this context,
the term “tar” refers to the complex mixture of organic compounds that are
produced by either biomass gasification or pyrolysis. In fuel synthesis operations,
tars are especially problematic, because if they are not fully reacted to product
gases or removed, they can condense and rapidly foul downstream equipment,
significantly decreasing the overall efficiency of the conversion process. The
ultimate nature of the tar produced from gasification or pyrolysis is a combination
of primary tar formation and secondary tar reactions that alter both the total
amount and composition of tars produced (17). Although a considerable amount
of work has focused on addressing the tar production problem, the overwhelming
majority of this previous work tends to fall in two distinct categories: the use of
catalysts to prevent or reduce tar formation in the fluidized bed (24, 25), or the use
of downstream tar-reforming catalysts to reform the tars into additional syngas
(26, 27). However, a fundamental understanding of the chemical and physical
processes responsible for tar formation is essential to develop efficient and viable
control strategies.

Computational fluid dynamics (CFD) has been recognized as a powerful
design and development tool in many industrial areas. For example, spectacular
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Figure 1. Reported hydrogen-to-carbon monoxide ratios from existing
fluidized-bed gasifiers. (sources: (18–23))

progress has been made in aircraft design that enabled a deep understanding
of crucial processes such as laminar to turbulent transitions, and fluid/structure
interactions for external flows, or turbulence/chemistry interactions, flame
stability and pollutant formation for engines, leading to the computational
exploration of novel, more efficient designs (28–30). These advances in numerical
techniques, applied to biomass thermochemical conversion systems, provide a
unique opportunity to improve CFD predictive capabilities and move beyond the
strictly empirical strategies that have shown severe limitations in terms of cost,
flexibility, reactor scale-up, and optimization of reactor design and operating
conditions.

This chapter will focus on the modeling of the fluidized-bed reactor
itself, disregarding the subsequent tar-reforming and fuel-synthesis processes.
Performance during this first stage is crucial to the overall process, as it determines
the extent and cost of the treatments required to clean and condition the synthesis
gas prior to power generation or fuel synthesis. The fluidized-bed reactor
combines most of the possible phenomena involved in thermal conversion,
including hydrodynamics, chemical processes and heat release, in a single unit
operation. Therefore, progress in this area will help develop comprehensive
models that encompass the additional units necessary for the gasification or
pyrolysis of biomass. For instance, in the case of indirect gasification, modeling
heat production through char combustion in an annex reactor can directly take
advantage of the multiphase reactive models developed for the gasifier. Accurate,
validated modeling of biomass behavior in fluidized-bed reactors is the crucial
next step for advancing computational modeling in biomass gasification and
pyrolysis.

The sections in this review include a description of biomass gasification
processes and existing numerical approaches that may be used to model them,
the role of CFD in reactor and process design and optimization, and the steps
necessary to translate descriptive CFD into predictive models.
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Biomass Thermochemical Conversion Processes and Modeling
Physical and Chemical Characteristics of Biomass Gasification

The first step of biomass gasification occurs when pelletized biomass enters a
fluidized-bed reactor (Figure 2). A fluidized-bed reactor consists of a bed of inert
material such as olivine sand, which is fluidized by injecting a gaseous medium
from the bottom. The bubbling or turbulent motion of the bed ensures good
mixing properties and uniform heat distribution. Superheated steam is usually
used to create fluidization when gasification is desired, as it actively contributes to
conversion to syngas. Biomass is injected into the reactor, either at the bottom or
top of the bed, and is quickly heated by the hot flowing gas and through collisions
with the hot sand.

The first stages of gasification are similar to those of pyrolysis. First, water
contained in the biomass evaporates. Then, volatiles are released, producing
permanent gases and primary tar, leaving behind fixed carbon in the form of
char. Primary products undergo further decomposition both inside the biomass
particle and in the gas phase. The composition of the gas released from the
biomass as well as the amount of carbon left in the char is highly dependent
on both the intra-particle thermal and chemical processes and the coupling with
the external flow. Gas flow in the reactor and particle collisions provide heat
and carry away devolatilization products, driving the biomass conversion to
syngas. To emphasize the coupling between all these processes, Figure 3 shows
the structural changes occurring in the plant cell walls when subjected to intense
external heat as encountered in fluidized beds. While the heat-exposed side (left)
suffers extensive deformation, the interior walls (right) remain nearly intact.
Clearly, heat and mass transfer inside the particle plays a crucial role in biomass
conversion, and need to be taken carefully into account in CFD to correctly
describe gasification and pyrolysis.

Some phenomena, similar to those briefly outlined above, can be found in
other engineering applications in which CFD might be at a more advanced stage
and, therefore, have been already studied extensively. Others are specific to
biomass conversion, and the available work mostly concentrates on local, detailed
modeling that has been rarely ported into CFD codes. Therefore, as illustrated
in Figure 4, capturing the complex dynamics of the multiphase reacting flows
encountered in a fluidized-bed gasifier requires combining a significant number
of models from various backgrounds and levels of accuracy and identifying and
handling potential interactions that may exist between these models. Next, we
give a short description of each of the processes and existing models that can be
applied in the context of fluidized beds.

Hydrodynamics of Particle-Laden Flows

Solid Phase Description

Gas-solid fluidized beds, characterized by their excellent mixing and heat
transfer properties, are used in a wide variety of chemical and engineering
industrial processes (31). The overall dynamic of these systems is dominated by
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Figure 2. Schematic of a fluidized bed reactor

large-scale structures such as bubbles and recirculation regions along the walls,
which, in turn, are controlled by interactions at the particle scale. Although
robust and accurate numerical methods have been developed over the years
for single-phase flows involving a gas or a liquid, such methods are still in the
development stage for multiphase flows or flows involving a particulate phase.
In a recent review of existing numerical models for gas-solid fluidized beds, Van
der Hoef et al. (32) identified five major classes of methods based on the strategy,
either Eulerian or Lagrangian, used to describe the gas phase and the solid
phase, respectively. Among them, the two-fluid model (TFM) and the unresolved
discrete particle model (DPM) have been the topics of a very large number of
studies. Both approaches usually make the assumption of constant size, spherical
particles.

TFM (33) follows a Euler-Euler approach that considers both phases
as continuous interpenetrating media described using Navier-Stockes-type
conservation equations. However, although easily implemented in pre-existing
CFD codes and relatively computationally inexpensive, this method requires
all processes at the particle scale, such as drag, collision and friction forces,
and heterogeneous chemistry to be included as phase-interaction terms into the
governing equations. Closures are obtained using the kinetic theory of granular
flows (34) or experimental correlation, for example for the fluid-solid drag force
(33, 35).

Two-fluid methods can be extended for polydisperse, particle-laden flows
involving particle size distributions and evolving particle sizes by using the
more general and rigorous framework of the methods of moments. Equations
are derived for a particle number density and its moments, conditioned on size,
density or velocity (36). Although mostly applied to dilute solid-phase systems
such as sprays (37), recent developments focused on the dense granular flows
found in fluidized beds (38).
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Figure 3. Structural changes in a heated biomass particle. (courtesy of Drs. T.
Haas and B. Donohoe, National Renewable Energy Laboratory, Golden, CO)

Figure 4. Modeling of physical and chemical processes interactions in biomass
thermochemical conversion.

DPM methods, on the other hand, use Lagrangian particle tracking to
describe the solid phase, in which each particle is transported following Newton’s
laws of motion (Figure 5). Particles are typically very small compared to the
gas flow computational cells. Therefore, details of the flow around the particle
are not resolved, and drag forces need to be modeled in a similar way as in
TFM. However, collisions between particles are considered explicitly using,for
example, hard-sphere (39) or soft-sphere (40, 41) collision models. Porosity is
taken into account by introducing the void fraction in the gas-phase governing
equations. Due to the very large number of particles involved in fluidized beds,
DPM approaches may become prohibitively expensive and are applied most often
in two-dimensional configurations.
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Figure 5. DPM simulation of bubble formation in a fluidized bed.

Gas Phase Coupling

In most practical applications, the gas flow is fully turbulent and must be
treated adequately to obtain meaningful results. Mature techniques developed
for aeronautics or internal engine flows may be extended to chemical reactors.
Depending on the required resolution of the solution and the computational
resources, Reynolds average equations (42) (RANS) or Large Eddy Simulation
(43) (LES) may be used. The former solves for the mean quantities of the
flow while modeling the fluctuations; whereas the latter can be seen as a filter
operation, resolving the large, energy-containing scales and modeling the smallest
scales. RANS methods are computationally affordable, as they usually require
only a few additional evolution equations, compared to laminar configurations,
for the kinetic energy and eddy dissipation rate. LES simulations are more
expensive because they demand a higher grid resolution, but provide a much
more accurate description of the unsteady, large-scale processes.

The interactions between gas and particles can have a significant impact on the
turbulence intensity of the flow through, and increase the apparent gas viscosity
(44). Precisely modeling the gas-particle couplings is important to accurately
capture the mixing properties of the bed, which are expected to have a predominant
impact on the overall reactor performances. A detailed review of the numerical
aspects associated with gas-solid coupling in particle-laden flows is given in Curtis
et al. (45).
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Reactive Particles

To simulate biomass conversion, a description of the complex chemical
processes needs to be combined with the above models for the hydrodynamics
of fluidized-bed reactors. The chemistry of biomass conversion has been the
topic of many experimental and modeling studies reviewed by Di Blasi (46)
among others. Most studies focus on the heterogeneous reactions associated with
biomass devolatilization. They often rely on kinetically controlled experiments
providing weight mass loss as a function of time or temperature (47–50). The
resulting data are used to derive kinetic rates for global schemes involving only
a few representative compounds and reactive steps. Kinetic control, however, is
not representative of the conditions found in realistic reactors and might even be
difficult to ensure in the experiments (46). Instead, heat transfer to and inside the
reactive particle by conduction, convection, and radiation is often the limiting
process. However, the details of heat transfer inside the reactor are much more
difficult to quantify experimentally. To understand heat transfer better, kinetic
data can be coupled to one-dimensional partial differential equations describing
the temperature evolution inside the particle. Most of these simulations are done
on one single particle in an infinite domain, and the results largely depend on
the kind of assumptions introduced (51–54). When more realistic configurations
are considered, heat transfer is often modeled using correlations based on a few
characteristic dimensionless numbers such as the Nusselt (ratio of conductive to
convective heat transfer) and Sherwood (ratio of convective to diffusive mass
transfer) numbers (55, 56). Although very convenient to use, these models have
been shown to be inadequate, especially for dense granular flows (57).

Comparatively few systematic studies into the nature or kinetics of gas-phase
tar formation from biomass devolatilization products have been conducted.
Taralas and Kontiominas (58) looked at secondary pyrolysis of vaporized
unsaturated hydrocarbons in the presence of water vapor and oxygen using toluene
and benzene as model compounds. Morf et al. (59) performed a mechanistic
study of primary and secondary tar reactions and concluded that secondary tar
reactions become important at temperatures higher than 650°C. These studies
have just begun to address the important issue of tar formation, and more detailed
work needs to be performed in this important area.

CFD Contribution to Process Design and Optimization

CFD appears as a cost-effective option to explore various configurations
and operating conditions directly at the industrial scale to find the optimal
configuration depending on the project specifications. However, CFD results
are only valid if appropriate chemical and physical models are developed and
validated using lab-scale experiments and robust numerical methods are used.
In the case of indirect gasification, the optimal configuration corresponds to
minimum tar content in the syngas; whereas in the case of pyrolysis, the tar output
needs to be maximized. This translates into different operating temperatures
and gas residence time inside the reactor. However, it must be emphasized
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that biomass pyrolysis and gasification in a fluidized-bed involve the same
small-scale phenomena. Therefore, both types of conversion can be studied
simultaneously and effectively using CFD, providing a versatility that cannot be
found in experimental approaches. The advantages of using CFD in conjunction
with well-designed validation experiments are given below, namely a global
understanding of the large-scale impact of local phenomena, the identification of
the most sensitive parameters, and guidelines for the industrial scale-up of new
reactors.

Numerical Experiments

As mentioned earlier, a current limitation of biomass gasification in a
fluidized-bed reactor is the high tar level in the product gas, causing fouling and
hazardous waste. Costly cleaning treatments to control the tar content of the
exiting gas are usually applied downstream. An appealing approach would be
to directly optimize the gasifier design and operating conditions to the biomass
properties for minimal tar production. Tar formation involves a lot of different
steps occurring at different time and length scales. Primary tars are formed
through biomass devolatilization inside the bed, which is highly sensitive to the
local heat transfer between the sand and biomass particles and gas flow around
the particles. Primary tar molecules are then transported across the reactor, where
their decomposition and further reactions to form secondary tars depend on the
temperature profile, residence time in the gas phase, and turbulence impact on
reaction rates. Developing efficient control strategies requires understanding in
detail each of these steps and how they are coupled with the larger scale flow
phenomena happening in the reactor. However, the types of measurement that
can be done on a full-scale reactor are considerably restricted, because visual
access inside a three-dimensional fluidized-bed reactor is very limited, and the
dense gas-solid mixture is difficult to sample without disruption. In most cases,
only global time-averaged data are available, such as exit gas composition, flow
rate, and temperature. To access internal details, some small-scale processes
have been extensively studied in well-controlled environments. They include
biomass devolatilization, non-reactive particle collisions, and gas-phase chemical
reactions. CFD offers a unique opportunity to incorporate these fundamental
results into a larger scale framework, in which process interactions can be studied.

Parameterization of the simulated configurations enables sensitivity analysis
studies, normally an expensive and highly time-consuming process when
performed experimentally. Sensitivity analysis should be conducted with two
objectives in mind: identifying the limiting steps, and providing guidelines for
further detailed modeling, as significant progress will be achieved if the most
important and sensitive processes are correctly and accurately modeled first.
Identifying the limiting processes and focusing on developing accurate models
for them are crucial steps toward optimizing biomass gasification, as they will
determine the exit gas composition and the amount of char left behind.

The CFD capabilities outlined above require that every component of the
whole CFD model be extensively validated, which will be detailed in a later
section.
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Reactor Scale-Up

CFD models based on first principles should be able to predict accurately the
gas-solid hydrodynamics at all scales, provided that a thorough validation of the
code has been performed. A fundamental challenge faced when trying to develop
new industrial-scale reactors based on laboratory results is the scale-up problem.
Scaling laws based on conserving non-dimensionless numbers from one scale to
another are often too simplistic or overly constraining to be reliable. The limited
success of the scaling approach comes from the fact that the hydrodynamic of
fluidized-bed reactors is not scale-similar because they involve scale-related
phenomena, e.g., bubble dynamics and wall effects, which promote better mixing
in small reactors (60). Instead, scale-up is usually done using one-dimensional
models that incorporate simple descriptions of the mixing processes and heat
transfer along the reactor. However, a pilot scale is often required between the lab
and full-scale reactors, as these simplified models have little predictability (60).
Minimizing or skipping pilot-plant validation of scale up through strategic use of
CFD models would represent both capital cost and time-to-market savings. Also,
the risk associated with developing a new industrial facility would be significantly
reduced, making it more attractive to investors.

Several initial attempts have been made to use CFD to help with scale up.
Lathouwers and Bellan (61) numerically studied the impact of reactor scale-up
for biomass pyrolysis in a fluidized bed. Although no experimental validation
was presented, they showed that increasing the bed size negatively impacted tar
production and that shallow fluidized beds with high fluidization velocity had
better scalability characteristics. Following a different approach, Van Ommen et
al. (62) investigated the performances of different sets of scaling rules based on
dimensionless numbers using CFD. They reported large variations in the void
fraction and pressure data and noted that none of the scaling laws tested led to
complete similarity between the two reactor sizes considered. No experimental
validation was provided to corroborate the results. Even without experimental
validation, these models suggest an interesting direction for pilot-scale work.
In their review about fluidized-bed scale-up, Knowlton et al. (60) recognized
that CFD is a promising approach, but given the state-of-the-art in numerical
methods, experimental work is still required for successful scale up. With the
right combination of computational advances and experimental validation, this
may not always be the case. Limitations to that vision will be highlighted in the
next section.

From Descriptive to Predictive CFD

The potential of CFD techniques is now widely acknowledged. However,
the models are not advanced enough yet to be considered as a reliable and
useful engineering tool for biomass gasification or pyrolysis. Two reasons for
this are the lack of predictability and limited computational resources. In the
following section, we give a brief overview of the different attempts to develop
comprehensive CFD gasification and pyrolysis models, highlighting the strong
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points and shortcomings of each method. Then, the obstacles that need to be
overcome to get truly predictive results will be discussed.

Existing Models

Comprehensive CFD simulations of biomass gasification or pyrolysis are
scarce. Although the challenges faced in coal conversion are slightly different
from those encountered in biomass conversion, the numerical frameworks remain
close, and tools developed for one type of fuel are expected to be applicable for
the other with only minor changes of the numerical methods required. Therefore,
advances in both domains will be reported here.

Simplified Models

The pressing need for predictive tools that are more sophisticated than
engineering correlations to optimize or scale up existing technologies has
led to the development of numerous simplified models that incorporate most
physical and chemical phenomena into a streamlined system of one-dimensional
differential equations. These equations represent the evolution of the biomass
particles as they move along the reactor. For example, Gobel et al. (63) developed
a mathematical model for a fixed-bed coal gasifier that included conservation
of mass and energy and reaction kinetics in the gas phase and char based on
chemical equilibrium and Langmuir–Hinshelwood correlations. Individual
components of the model were either based on first principles or determined from
thermo-gravimetric experiments. The approach was validated and implemented
in a real plant. A slightly more detailed approach was followed by Radmanesh et
al. (64) to model a bubbling fluidized-bed reactor under isothermal conditions.
Three stages were simulated successively. The various product yields of biomass
pyrolysis, including a tar pseudo-component, served as initial conditions in the
one-dimensional simulation of the bed using a countercurrent back-mixing model
describing the evolution of the bubble (gas) and emulsion (mixture of gas and
solids) phases. This was further combined with a gas-phase chemistry model
describing the tar conversion to permanent gases and refractory tar. Maistrenko
et al. (65) developed a one-dimensional unsteady model for polydisperse
combustion of coal in a fluidized bed with heterogeneous chemistry involving
only a few permanent gas species.

The conservation equations along the reactor axis may be coupled
to a one-dimensional description of the evolution of the reactive particle,
usually assumed to be spherically symmetric. An example of such pseudo
two-dimensional differential systems is found in Luo et al. (66), who studied
wood-flash pyrolysis in a fluidized-bed reactor. All variables were assumed to be
homogeneous in the bed radial and azimutal directions. Very recently, Pierucci et
al. (54) combined the semi-detailed chemistry model for biomass pyrolysis and
gas-phase reactions of Ranzi et al. (67) with a one-dimensional model for moving
bed gasifiers using a multi-zone description of the biomass particles. Validation
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was performed using gas composition at the exit of a lab-scale reactor, and results
showed acceptable agreement between simulated and experimental data.

Although some of themodels above have been used successfully in the context
of real industrial-scale processes, clearly the assumptions and simplificationsmade
in their development prevent them from being extended to different conditions and
configurations, and they provide only limited insight on the details of the small-
scale physical phenomena responsible for somemajor behavior such as the amount
of tar in the exit gas. Therefore, a more detailed consideration of those phenomena
is essential.

CFD in Realistic Configurations

The next step toward predictive CFD tools in various configurations is to rely
on first principles and directly solve the coupled conservation equations for all
variables. The increased resolution comes with an increase in computational cost,
and most studies can afford only two-dimensional domains, even for cold-flow
configurations in which no energy or species conservation equation is solved.
Numerical simulations of cold fluidized beds are numerous. A two-fluid approach
is employed in the recent papers on segregation in poly-disperse fluidized beds
by Gera et al. (68), Huilin et al. (69), and Fan and Fox (38), or in the work
of van Wachem et al. (70), Patil et al. (71, 72), or Papadikis et al. (73) on
closure formulation and validation. Others are based on a discrete particle
approach (e.g., see Xu and Yu (74), Patankar et al. (44), Goldschmidt et al.
(75) for the soft-sphere model; von Wachem et al. (76) for the hard-sphere
model; Snider (77) for a volumetric approach to particle collisions; or the review
paper of Deen et al. (78)). However, very few studies have tackled the coupled
gas-solids hydrodynamic/reactive particle problem characteristic of biomass or
coal thermochemical conversion systems. The following description of some of
the most significant advances in this field gives a sense of the challenges still
faced before CFD can become a predictable and reliable tool.

Fletcher et al. (55, 79) performed a three-dimensional simulation of coal
combustion in an entrained flow biomass gasifier using the CFX package
(80). Although the entrained flow reactor only involves a dilute particle-laden
flow where collisions have been neglected, the simulation includes most of
the important processes found in biomass gasification in fluidized beds and is
worth mentioning here. Biomass particles are tracked down the reactor using
a Lagrangian approach. A particle-size distribution is prescribed, and the
corresponding initial particle diameters are assumed to remain constant during the
simulation. Chemistry is included using a global kinetic model involving only a
few species: CH4, H2, CO, CO2, H2O, N2, and O2, but considers devolatilization,
heterogeneous char conversion, and gas-phase chemistry. Gas-phase turbulence
is modeled using a RANS approach, and the effect of turbulence on both the
particles and the chemical reactions is taken into account. Very limited validation
was carried out, with only the qualitative exit gas composition compared with
experimental data.
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Lathouwers and Bellan (61, 81) proposed a comprehensive mathematical
model to describe the dynamics of dense, reactive gas-solid mixtures and applied
it to the simulation of biomass pyrolysis in a fluidized bed. Ensemble average
equations are derived for each of the gas and various solids phases and appropriate
closure models are formulated. Because the equations are derived using general
moment methods, they do not require certain properties that are assumed in other
two-fluid models such as equi-partition of granular energy among the particle
classes. Chemistry is included in the form of the kinetic model for biomass
pyrolysis developed byMiller and Bellan (51). The biomass particles are assumed
to have a constant diameter throughout the simulation, while the porosity of
the solids phase increases. No comparison with experimental data is presented;
however, the qualitative response of the reactor in terms of tar yield as a function
of parameters such as temperature is recovered. Parametric simulations are
performed and demonstrate the ability of CFD models to identify optimal reactor
operating conditions and assist in the scale-up process.

Zhou et al. (56, 82) coupled a soft-sphere discrete particle method with
LES to describe coal combustion in a bubbling fluidized-bed reactor. The effect
of particles on sub-grid scale gas flow and the turbulent gas-particle interaction
force were taken into account. The kinetic model for char combustion is based
on a distributed activation energy approach function of the heating rate. NOx
formation being a major concern for combustion systems, nitrogen species
are considered along with CO, CO2, H2O, and O2. The burning char evolves
following a shrinking-core approach, in which particle density remains constant
while their diameter decreases as combustion proceeds. Particles are assumed
to be isothermal. Parametric simulations were conducted to study the heating
and subsequent combustion of the initially cold coal particles introduced in the
hot sand bed. Excess temperatures of the burning particles were found to be in
agreement with values reported in the literature. Also, the simulations showed
that the presence of large reactive particles significantly affected the particle
flow structure and that momentum and energy were mainly exchanged through
collisions between particles rather than through the gas phase.

More recently, Yu et al. (83) developed a two-fluid model based on the kinetic
theory of granular flow and coupled it with a multi-step chemistry model to study
coal gasification in a two-dimensional bubbling fluidized-bed gasifier. Turbulence
is captured using a k-ε RANS model, and the competition between kinetics and
turbulent mixing is considered. The coal particles are assumed to be monodisperse
spheres of constant density. Evolution of the major permanent gas species are
included, as well as C2H6, C6H6, and H2S. Calculated mole fractions of the major
species in the exit gas were shown to be in good agreement with experimental data
for different running conditions. A comparative summary of these studies is given
in Table 1.
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Table 1. Comparison of the models used in comprehensive CFD studies of
biomass or coal conversion devices

Authors Lathouwers et al. Zhou et al. Yu et al. Fletcher et al.

Reference (61, 81) (56, 82) (83) (55, 79)

Fuel Biomass Coal Coal Biomass

Application Pyrolysis in
fluidized-bed

Combustion
in fluidized-

bed

Gasification
in fluidized-

bed

Gasification
in downdraft

gasifier

Dimensions 2 2 2 3

Multiphase Eulerian Lagrangian Eulerian Lagrangian

Turbulence RANS LES RANS RANS

Chemistry Global,
3-component

wood, tar, char, gas

Multi-step,
NOx species

Multi-step,
CO, CO2,

O2, H2O, H2,
CH4, char

Multi-step, CO,
CO2, O2, H2O,
H2, CH4, char

Validation
with

experiments

None None Major
species

composition
of exit gas

Very limited (exit
gas composition)

An attempt to integrate a more comprehensive description of the complex
chemistry taking place in the gas phase into a CFD code is given in Gerun
et al. (84). They studied the impact of tar formation on the temperature and
velocity patterns in the oxidation zone of a two-stage downdraft gasifier using a
semi-detailed mechanism for a tar model compound, phenol, in a two-dimensional
axisymmetric domain. No solids were considered, and turbulence was modeled
using a RANS approach coupled with an eddy dissipation model. A very partial
comparison with experiments was done for the average gas temperature profile
inside the reactor and tar concentration after the oxidation zone.

Model Verification and Validation

One of the major obstacles preventing a wider use of CFD tools at both the
research and industrial level is the lack of thorough verification and validation of
the existing models. Verification involves confirming the correct implementation
of the model from a numerical point of view, while validation aims to assess
the ability of the model to represent the actual physical process considered (85).
Grace and Taghipour (86) provide a critical analysis of the current standards for
fluidized-bed CFD model validation, highlighting the fact that virtually none of
the existing models, although claimed to be validated with experimental data,
have enough credibility to be applied beyond the model development stage. The
validation process usually follows a hierarchical approach, with the building
blocks of the CFD model being first tested in simple configurations involving a
limited range of physical or chemical phenomena, or for which theory can provide
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analytical results. Examples of these simpler test cases include transient interface
levels for batch sedimentation of particles (87), Reynolds number at minimum
fluidization conditions to validate the drag force model (88), or hopper discharge
rate to evaluate the particle friction model (89).

On a more global scale, most experimental data on the hydrodynamics
of fluidized beds are obtained in pseudo-two-dimensional gas-fluidized beds
(41, 75, 76, 90, 91). It must be noted that because of the chaotic nature of
fluidized-bed reactors, only flow statistics are meaningful enough to compare
between simulations and experiments. Images from these experiments are either
used for visual qualitative comparison or post-treated to extract quantitative data
such as average void fraction or porosity across the bed, bed height, and bubble
average diameter and velocity. Additional measurements can be done for bed
expansion (92, 93) or pressure fluctuations (70). Fluidization and segregation
has been studied extensively for binary mixtures (94) and continuous particle
size distributions (95). Measures have been developed to quantify the extent of
segregation in a fluidized bed (93). To measure the gas turbulence in the freeboard
of a fluidized bed being induced by bubble bursting at the surface of the bed,
Solimene et al. (96) recently developed laser diagnostics to study the evolution
of vortices generated by a single bubble bursting at the surface of the bed. These
experiments provide quantitative measurements of vortex displacement and
concentration of a tracer species. As illustrated above, the hydrodynamics of
a fluidized bed are experimentally characterized only on a global scale, often
for simplified, two-dimensional systems. Gas and particle velocity fluctuations
throughout the bed or three-dimensional measurements of the bubble dynamics
are not available, nor are systematic studies over ranges of fluidization conditions,
for non-spherical particles or evolving particle size and density distributions, both
characteristic of biomass systems.

The situation is even more critical for reactive systems, for which very little
detailed experimental data is available. Average exit gas flow rate and composition
can be easily measured and compared to CFD results (83). Radmanesh et al.
(64) measured the evolution of the gas composition along a fluidized-bed reactor
during biomass gasification for various conditions in terms of bed temperature
and equivalence ratio. Only total dry gas yield and major permanent gas species
were provided. Van Paasen et al. (97) provide comprehensive tar measurements
from biomass gasification in fixed and fluidized beds. However, gas samples
were not taken inside the reactor, but after a cyclone, which might not be directly
comparable with CFD simulations. Numerous studies of wood devolatilization
have been conducted to measure devolatilization time and char yield for various
feedstock, particle sizes and shapes in fluidized beds, by Sreekanth et al. (98), Di
Blasi and Branca (99), Wang et al. (100) and de Diego et al. (101) for large wood
cylinders or cuboids. Using one single model for devolatilization time, Sreekanth
et al. (98) showed that those measurements were consistent with each other.
Jand et al. (102) performed devolatilization of a finite number of smaller wood
particles in a fluidized bed. Conditions were designed so that the devolatilization
chemistry occurred inside the particle, therefore limiting the extra-particle and
gas-phase conversion of volatiles to permanent gases and secondary tar. Char
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yield measurements, permanent gas compositions, and amount of tar in the exit
gas were reported.

However, even if models describing multiple particles should remain
an extension over single-particle models, the one-at-a-time particle feeding
approach used in most of these experiments causes significant problems for CFD,
preventing the corresponding experimental data from being used for rigorous
model validation. On one hand, Eulerian techniques are not designed to handle a
finite number of particles, as the average solid fraction on which the conservation
equations are based becomes ill defined in the limit of very few particles. On the
other hand, most Lagrangian methods assume a small particle diameter compared
to the gas-phase computational grid. This assumption breaks down when large
particles are gasified in moderate size fluidized beds. In that case, two-way
coupling between gas and particles needs to be revised (103). Moreover, single
particles injected on top of a bed can remain on top, sink to the bottom of the
bed or be caught in a recirculation region. These different trajectories involve
different types of physical processes and different heat transfer modes. Therefore,
it is very unlikely that Euler-Lagrange CFD simulation of a single-particle
gasification matches what happened in the experiments. A statistical treatment
needs to be adopted, such as Monte-Carlo simulations, where the same process is
simulated a large number of time from slightly different initial conditions (104).
Also, very little is known about the evolution of biomass particle size, density,
porosity and composition during gasification, even if those variables are expected
to greatly impact both the hydrodynamics of the bed and products release as a
function of time.

Another important aspect of CFD validation using reactive bed experimental
data, such as exit gas composition, is the fact that these data are the results of
a large number of different processes that cannot be distinguished from one
another. Therefore, a good agreement for the output gas composition between
a CFD simulation and some set of experimental data may be the result of error
compensation. Again, a reasonable way to validate a CFD model is to proceed
hierarchically from much simpler configurations involving only a few processes
and considering a wide variety of experimental results. However, even this
approach might prove difficult. For instance, many kinetic data on biomass
devolatilization may not have been obtained under rigorous kinetic control,
casting doubt on their validity (46).

Computational Resources and Modeling Challenges

Simulating industrial-size fluidized-bed reactors while considering all
physical and chemical processes involved is a fantastic task, even supposing that
all appropriate models have been developed. The multi-scale nature of the flow
requires either a very fine mesh resolution or adequate sub-grid scale models.
Cold Lagrangian simulations, originally developed for two-dimensional beds
(40), have very rarely been applied to three-dimensional beds and usually involve
only a few thousands particles, very far from the actual number found in realistic
systems and not sufficient to derive good statistical data. To circumvent this
computational limitation and move toward more realistic simulations, particles
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with similar characteristics may be grouped into parcels (44). Still, the problem
is exacerbated by the wide particle-size distribution functions usually found in
biomass samples.

To deal with particle-size distributions, Lagrangian methods require even
more notional particles to correctly represent the distribution function, while Euler
methods often consider separate conservation equations for each particle class.
This approach quickly becomes complicated, as closure terms and interactions
must be defined for each particle class and assumptions have to be made on
particle velocity distributions (105). Simple binary mixtures were investigated
and compared to experimental data using this approach (106). A very promising
method called quadrature method of moments, or QMOM, represents the particle
size distribution as a collection of weighted delta functions for which separate
evolution equations can be solved (107). Particle mixing and segregation in a
fluidized bed with a continuous particle size distribution were investigated and
the results compared favorably with detailed DPM simulations (38).

Incorporating detailed chemistry into a CFD code is also very computationally
expensive, as it introduces many additional conservation equations for each of
the species considered, which in turn requires lengthy evaluation of the chemical
source terms and may lead to space and time scales much smaller than those
of the hydrodynamic processes. Once reactive time-scales dominate, the time
steps and grid spacing are dramatically restricted. Virtually all CFD studies
of reactive fluidized beds have considered only global conversion steps or
multi-step kinetic schemes involving only a few major species. Very recently,
Ranzi et al. (67) proposed the first semi-detailed kinetic model for biomass
conversion containing several hundreds species and reactions. This model
employed a lumped approach and a limited number of model compounds to
describe biomass devolatilization where detailed mechanistic relationships are
developed to describe the decomposition of the model compounds. However,
the size of such mechanisms prevents them from being used directly in CFD.
Several approaches to handle complex chemistry in CFD simulations have
been developed in the context of hydrocarbon combustion systems that could
potentially be transferred to gasification processes. The first one is to reduce a
priori the detailed mechanism to a smaller size in terms of species and reactions
based on homogeneous simulation results, so that only the chemical pathways
relevant to the current study are retained (108). Then, computing the chemical
source term can be optimized and accelerated using an on-the-fly storage and
retrieval technique called in-situ adaptive tabulation, or ISAT (109). In each
computational cell, the chemical source term and corresponding chemical state
are stored as the simulation proceeds and are re-used instead of re-computed if a
similar chemical configuration is found later in the simulation. The applicability
of the method for reactive fluidized beds was demonstrated by Xie et al. (110) for
silane pyrolysis.

Another tabulation technique consists of solving the evolution equations
for a few variables only, chosen so that these variables map the entire chemical
composition space with good accuracy. Detailed chemistry is tabulated a priori
using these variables, which drastically reduces computational time. Tabulation
methods have been developed and extensively validated for gas phase combustion
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systems (111), in which a mixture fraction linked to the local ratio of fuel
and oxidizer, or a progress variable describing the local extent of the global
combustion reaction are easily defined. Such techniques cannot be directly
applied to gasification processes, but must be adapted to the specific chemistry
occurring in the fluidized bed.

One of the major obstacles to predictive CFD capabilities of biomass
gasification or pyrolysis is the intrinsic complexity of the biomass itself. Biomass
composition varies widely depending on the feedstock, age, geographic location,
and even time of year. It was also shown repeatedly that biomass is not just the
sum of its major components; lignin, cellulose, and hemicellulose (46). Biomass
particles are highly anisotropic (112), contain trace components such as metal
that can act as chemical catalysts (113) and moisture that may delay gasification
(102). Biomass gasification is, therefore, a perfect example of a multi-scale
problem, in which phenomena localized at the smallest scales are responsible for
large-scale behavior. Reactor optimization requires these processes to be fully
understood and characterized. Some detailed modeling studies at the scale of the
biomass or coal particle take into account their complex structures (114, 115).
Such investigations, coupled with experimental observations, are essential to
develop larger scale statistical models suitable for use in CFD, because it is not
currently conceivable to include that amount of detail in large-scale simulations.

Conclusions

Computational fluid dynamics methods, as an essential complement to
experimental investigations, has a considerable potential to help meet our
present and future needs for efficient energy production and conversion systems.
However, we have shown that a lot of challenges still lay ahead in the near
future for biomass thermochemical conversion processes to obtain reliable,
predictive simulations that can be used as stand-alone tools for reactor design
and optimization. Many areas of biomass conversion modeling can benefit
from advances in other fields, such as combustion systems, in which CFD is
a very active research topic. However, the modeling of biomass conversion
systems combines two of perhaps the most challenging aspects of CFD, namely
dense particulate flows and a complex and very specific chemistry. Until now,
biomass chemical models have been based on global, over-simplified mechanisms
obtained through experimental correlations. Because detailed and accurate
chemistry is a key element in understanding and controling output efficiency and
tar formation, only significant progress in this area, coupled with major advances
in numerical methods for multiphase flows and viable verification and validation
strategies, will enable us to seize the opportunities provided by the ever-growing
computational resources.
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Chapter 13

New Methods To Find Accurate Reaction
Coordinates by Path Sampling

Gregg T. Beckham1,* and Baron Peters2,3,*

1National Bioenergy Center, National Renewable Energy Laboratory,
Golden, CO 80401

2Department of Chemical Engineering, University of California, Santa
Barbara, CA 93106

3Department of Chemistry and Biochemistry, University of California,
Santa Barbara, CA 93106

*gregg.beckham@nrel.gov; baronp@engineering.ucsb.edu

Complex, high-dimensional systems are often characterized
by dynamical bottlenecks, or rare events, that determine the
rate of evolution of a given system. As the transition states
through the dynamical bottlenecks are often difficult to capture
experimentally, theory and computation are useful tools to
elucidate transition states. This review describes a set of
computational methods that enable the rigorous determination
of mechanisms, free energy barriers, and rate constants for
activated processes in complex, high-dimensional systems.
The transition path sampling method for sampling reactive
pathways and a subsequent methodological development,
aimless shooting, are reviewed. Likelihood maximization,
which is a method to extract the reaction coordinate of an
activated process from path sampling data, is discussed in
detail. In addition, the equilibrium path sampling approach
and the earlier BOLAS approach for determining free energy
barriers are examined. These techniques offer a means to access
kinetically meaningful results from molecular simulation of
activated processes in complex systems.
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1. Introduction

For activated processes, or those that must overcome a free energy barrier to
occur, systems of interest typically fluctuate for long times in metastable basins
before passing through dynamical bottlenecks, or transition states. Transition
states are often fleeting and therefore difficult to capture experimentally. However,
details of these transition states often yield clues for rational design of effective
catalysts (agents that reduce free energy barriers and thereby increase the rate
of interest) or inhibitors (agents that increase free energy barriers and thereby
reduce the rate of interest). Theory and computation allow researchers to test
molecular-level hypotheses by characterizing dynamical bottlenecks in activated
processes, thus representing essential tools in understanding and modifying
activated processes.

Many computational approaches have been developed to understand the
mechanisms of activated processes. For systems with few degrees of freedom,
such as chemical reactions of small molecules in the gas phase, saddle-point
methods have proven especially powerful as saddle points on the smooth potential
energy surface typically reveal the mechanism (1–11). Conversely, for activated
processes that involve many degrees of freedom, such as conformational changes
in proteins and first-order phase transitions in molecular systems, the energy
landscapes are “rough”, making saddle point methods unsuitable.

To address the issue of finding mechanisms on rough energy landscapes,
Chandler and others pioneered the method of transition path sampling (TPS).
TPS is designed to efficiently harvest pathways of activated processes without the
need to assume a mechanism a priori (12–18). Since many research questions in
both the construction and conversion processes of the plant cell wall, the subject
of this book, are concerned with solvated biological systems (e.g., hydrolysis
of crystalline cellulose by enzymes) as well as solvated chemical systems (e.g.,
chemical pretreatment of lignocellulosic biomass), both of which involve rough
energy landscapes, the objective of this review is to discuss path sampling
approaches to extract mechanisms and calculate free energy barriers in complex,
molecular systems. The tools outlined here, primarily transition path sampling,
aimless shooting, likelihood maximization, and equilibrium path sampling
provide a rigorous methodology for extracting accurate kinetics from molecular
simulation.

Free Energy and the Reaction Coordinate

Free energy diagrams for activated processes, such as that shown in Figure
1, are typically plotted as free energy (F) as a function of the reaction coordinate.
The reaction coordinate is the 1-D variable that describes the progress along a
reaction pathway from a reactant basin, denoted here as “basin A”, to a product
basin, denoted as “basin B”. While many order parameters (OPs) tend to change
with a reaction, we reserve the reaction coordinate designation for particular OPs
that accurately project the 3N-dimensional dynamics onto 1-D.
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The free energy barrier, which determines the rate of an activated process via
transition state theory, is the difference in free energy from the transition state to
the free energy of the reactant basin, or (F‡ – FA). Accurate determination of the
free energy barrier from molecular simulation is essential to make rate predictions
from computational results. However, to determine the free energy barrier in a
kinetically meaningful way, it is essential to know the reaction coordinate of the
process of interest.

Figure 2 highlights the problems associated with assuming reaction
coordinates. For the free energy surface in Figure 2, the pathway in blue denotes a
typical route to go from basin A to basin B. However, one might assume that since
q1 changes between the reactant and the product, calculating the free energy with
q1 as the reaction coordinate will yield the correct free energy barrier. However,
if other another collective variable, such as q2 shown in Figure 2, is a significant
component of the reaction coordinate, free energy sampling in both directions will
yield severe hysteresis depending on the sampling direction 9 as shown in red.

Chandler and coworkers illustrated the problem with assuming reaction
coordinates for several systems in which the choice of the reaction coordinate
seemed obvious. For instance, in the dissociation reaction of a Na+ and a Cl- ion
in aqueous solution, the first reaction coordinate of choice would be the distance
between the ions. However, Geissler et al. showed that the distance between the
ions for this reaction was a very inaccurate reaction coordinate (19). Instead they
suggested solvent degrees of freedom as likely components of the correct reaction
coordinate. Efforts in follow-up work to our knowledge have yet to definitively
identify the appropriate reaction coordinate for this process (20).

Another example from the Chandler group in which the reaction coordinate
turned out to be surprisingly complicated is the isomerization reaction of the
alanine dipeptide, a frequent model system for validating methods in statistical
mechanics. Decades of previous studies (21–28) assumed that the Ramachandran
angles were accurate reaction coordinates, but Bolhuis and coworkers showed
that an accurate reaction coordinate could not be constructed from Ramachandran
angles alone (29). Later, Ma and Dinner showed that solvent degrees of freedom
were important components of the reaction coordinate for the alanine dipeptide
isomerization.

These two examples illustrate the danger in assuming the reaction coordinate
even for seemingly simple systems. They also illustrate the danger of using coarse-
grained models to understand the kinetics of biological reactions that occur in
solution. The dynamically correct reaction coordinate in both of these systems
involves complex solvent dynamics that would be lost in coarse-grained models
with implicit solvent.

Clearly, the kinetics of complex reactions in solution are important in many
aspects of biomass conversion. To obtain reliable insights into themechanisms and
rates of these processes from atomistic simulations, efficient algorithms are needed
to identify accurate reaction coordinates. This review describes the development
of path sampling methods that fulfill that need.
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Figure 1. Free energy (F) as a function of the reaction coordinate. The reactant
basin is denoted as A, the product as B, and transition state is denoted by ‡.

Figure 2. Free energy surface with two stable basins, A and B. Because q1 incurs
a large change between the reactant (A) and the product state (B), one might
assume q1 is the reaction coordinate. However, free energy calculations along
either of the coordinates q1 or q2 would show hysteresis effects if the barrier is

large. (see color insert)

The Central Idea of Transition Path Sampling

Conventional molecular dynamics (MD) and Monte Carlo (MC) algorithms
are typically used to study properties of stable or metastable states. However, in
studying the transitions between two metastable states, an MD trajectory initiated
in basin A on Figure 1 may take a very long time to escape to basin B if the barrier
is high. Even if a trajectory initiated in basin A does eventually cross the barrier to
basin B, the fraction of time spent at the top of the barrier, the region of interest for
understanding the mechanism, will be miniscule relative to the overall simulation
time. Thus using conventional MD or MC methods to simulate barrier crossings
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Figure 3. Trajectories initiated on a free energy surface. (a) A trajectory initiated
in basin A spends the majority of the simulation time in basin A. If the barrier
is low enough and the simulation long enough, there may be a possibility of

observing a rare event in which the system overcomes the barrier to reach basin
B. However, in the case of high barriers and (or) large systems, this is unlikely and
incredibly inefficient. (b) A trajectory initiated from an intermediate point along
a reactive trajectory is able to quickly move to basin A or basin B, depending on

the initial configuration and momenta of the system. (see color insert)

“wastes” the overwhelmingmajority of the simulation time, as illustrated in Figure
3(a).

To circumvent the inability to efficiently sample regions of high free energy
in real systems, Chandler and co-workers pioneered the technique of transition
path sampling (TPS) (13–18), which utilizes a Monte Carlo type algorithm in
trajectory space. TPS generates a sequence of reactive trajectories by modifying
each trajectory and then accepting or rejecting the new trajectory based on its
statistical weight in the “path space” of reactive trajectories. Each trajectory is
generated according to the natural dynamics of the system, so that the trajectories
do not contain artifacts from being forced along a pre-chosen coordinate like the
trajectories from steered-MD and similar methods. Thus, the central idea of TPS
is to generate the true unbiased ensemble of barrier crossing trajectories without
simulating the long time that a standard simulation would waste between barrier
crossing events.

Each trajectory has a probability in "path space" proportional to the
probability to start at the initial point in phase space (the Boltzmann distribution)
multiplied by a series of transition probabilities for following the trajectory from
one timeslice to the next starting from time 0 to the total trajectory duration T.
The TPS algorithm accepts trajectories according to their probability in trajectory
space with the constraint that accepted trajectories must connect basins A and
B. To generate new trajectories, TPS employs shooting and shifting moves.
Shooting moves create a new trajectory from an old trajectory by changing the
momentum slightly at a random timeslice t along the previous trajectory. Then
the dynamics are propagated forward and backward in time to times 0 and T. In a
shifting move, a length of time Δt is cut from one end of the previous trajectory
and then the dynamics are propagated from the other end for an additional time
Δt to regain a trajectory of duration T. Most formulations of TPS use dynamics
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that conserve the ensemble in which the reaction is being studied. In this way the
acceptance rule for new trajectories becomes simple: trajectories are accepted if
they connect states A and B.

To date, path sampling has been applied to a wide range of systems, such
as conformational changes in model peptides (29), the folding of small proteins
(30), conformational transitions in biomolecules (31), micelle formation (32),
hydrophobic polymer collapse (33), nanoparticle assembly (34), ion association
in solution (19), autoionization of water (35), order-disorder transitions in glass
forming model systems (36), the nucleation of hexagonal ice (37), structural
changes in inorganic nanocrystals (38), solid-solid polymorph transformations
in organic crystals (39, 40), nucleation of sodium chloride from solution (41),
chemical reactions (42), etc. From both a physical and computational standpoint,
many of these problems are directly analogous to problems encountered in
understanding molecular-level events in fundamental research problems in
biomass construction and conversion, which typically involve solvated systems
and diffusive processes. Therefore we propose that path sampling approaches will
be an integral part of the computational toolkit for understanding the mechanisms
in the synthesis and degradation of lignocellulosic material, both in the natural
world and for use in the biofuels industry.

TPS has been extensively reviewed elsewhere by the original developers (13,
18). To avoid unnecessary overlap, we instead focus on introducing the latest
developments to computational groups studying problems in the construction and
conversion of biomass, a research community that is beginning to incorporate
simulation as a tool to study molecular-level details of systems and processes
of interest (43–50). In Section 2, we discuss the importance of quantitative
basin definitions, highlight methods for finding initial pathways, briefly describe
the algorithm of the original TPS method, and discuss at length a new version
of TPS with many advantages over the original algorithm, Aimless Shooting
(51, 52). In Section 3, we discuss three methods used to extract the reaction
coordinate from path sampling methods: the pB-histogram test (19, 53), the
Genetic Neural Network approach (54), and likelihood maximization (51, 52).
We also discuss the utility of the pB histogram test to verify the reaction coordinate
and quantify the error associated with the reaction coordinate from the resulting
histogram. Section 4 describes a new method to calculate free energy with a
path sampling approach, equilibrium path sampling (55), which is based on the
BOLAS algorithm developed by Radhakrishnan and Schlick (56) and from the
hybrid MD/MC approach as used by Auer and Frenkel (57). In Section 5, we
review methods to calculate rate constants in diffusive systems, and we conclude
in Section 6 with our perspective on path sampling approaches in biomass
construction and conversion problems and future methodology development.

2. Path Sampling Algorithms

This section discusses some practical considerations in collecting a transition
path ensemble with path sampling. We stress the importance of accurate basin
definitions, outline methods for finding initial pathways, summarize the original
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TPS algorithm, and describe a new path sampling algorithm, aimless shooting, in
detail.

Basin Definitions

TPS is designed to function without knowledge of the reaction coordinate.
However, the Monte Carlo-like path action, described in the next sub-section,
requires quantitative descriptions of the reactant (A) and product (B) basins. The
path action is described as a function of population functions, denoted hA(x) and
hB(x), where hA(x) = 1 if x is in basin A and 0 otherwise, with the corresponding
values for hB(x) if x is in basin B or not in basin B. Defining the basins is an ad
hoc process for each new research problem, but there are three rules to guide the
development of practical basin definitions:

1. The basin definitions must include typical equilibrium fluctuations within
each basin.

2. Basins A and B must not overlap during the collection of the transition
path ensemble, or TPS will find a path from A to B that never leaves A .

3. To optimize the reaction coordinate accurately, the basin definitions
should leave as much configuration space as possible assigned to the “no
mans land” between the two basins.

Typically, basin definitions are constructed by running long MD simulations
in the reactant and product basins. From the equilibrium simulations, the
fluctuations in various OPs can be monitored and quantitative basin definitions can
be established by selecting windows along several of the OPs whose distributions
in A and B do not overlap. For instance, in the case of a conformational change
in a protein, possible basin definitions include φ-ψ angles, distances of particular
residues, native contacts, radius of gyration, or hydrogen-bonding between
residues (58). It is essential that basin definitions be carefully developed prior to
conducting path sampling.

Finding Initial Pathways

Path sampling generates a sequence of reactive trajectories by modifying
the previous trajectory in the sequence. Thus path sampling methods require
an initial reactive trajectory. This initial pathway does not necessarily have to
be an unbiased dynamical pathway. Although there is no general formula for
obtaining an initial pathway, several methods used in the literature to harvest
initial trajectories include:

1. Long, unbiased trajectories (40)
2. Minimum energy path or minimum free energy path methods (3, 7, 28,

59)
3. Umbrella sampling along an assumed reaction coordinate (40)
4. Targeted or steered MD (60)
5. High-temperature sampling (58, 61–63)
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6. Alteration of the Hamiltonian (41)
7. Bias annealing over an assumed reaction coordinate (64)

Running long, unbiased trajectories at the conditions of interest is the
most straightforward method to obtain an initial pathway (40); however if the
free energy barrier is significantly greater than kT and the system is large, this
may take an overly excessive amount of computational time. Methods such
as umbrella sampling (65), in which a series of harmonic restraints are placed
on the system along the assumed reaction coordinate in overlapping windows
can yield a pathway more efficiently than running unbiased trajectories (39, 40,
66). However, this approach requires judicious selection of an assumed reaction
coordinate that will yield a physically reasonable initial pathway. In a similar
vein, targeted MD (60) can be used to obtain an initial pathway as in (39). In cases
where system stability as a function of temperature is not significantly variable,
running unbiased simulations at high temperature can accelerate transitions
(61). For sodium chloride nucleation from solution, Zahn cleverly adjusted the
van der Waals radius of the solute and solvent ions to promote nucleation in a
computationally accessible simulation (41). When path sampling was started
from this initial pathway, the potential was changed back to the original parameter
set.

In the case of biasing the system to follow a particular pathway, or assumed
reaction coordinate to obtain an initial pathway, it is essential to equilibrate the
system in trajectory space once path sampling is initiated. For instance, if MD
umbrella sampling is used to harvest an initial pathway for a conformational
change in a protein or a nucleation event, the first subset of trajectories collected
with a path sampling algorithm should be discarded because the system will
anneal to the true free energy landscape at the conditions of interest, rather than
the assumed free energy landscape.

A particular method of note to obtain an initial pathway that systematically
minimizes the need for trajectory space equilibration was developed by Hu,
Ma, and Dinner (31). Their method uses a bias annealing approach in which a
trajectory is first harvested with steered MD with a large force constant. From
this initial, biased pathway, successive pathways are generated iteratively by
reducing the force constant and firing trajectories from random points along the
previous pathway in both directions. This approach has been successfully applied
to harvest an initial pathway in nucleotide flipping by a DNA repair protein (31,
64). We anticipate that this method will prove to be useful for many problems in
which conformational transitions in biological or macromolecular systems are the
processes of interest.

Once an initial pathway is generated, it is essential to know approximately
where the transition state region is located along the initial pathway as input
into a path sampling algorithm, as will be discussed. The transition state region
along the initial trajectory can be found by shooting multiple, randomly seeded
trajectories from different configurations along the initial trajectory and noting the
final configuration. If trajectories from a given configuration sometimes end in A
and sometimes end in B, this suggests that the selected configuration is located
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near the transition state region. An approximate pB=1/2 point along the trajectory
can be identified efficiently from a bisection algorithm.

Transition Path Sampling

As mentioned previously, several excellent reviews of TPS are available from
the original developers (13, 18). Reference (18) reviews many of the working
aspects of TPS applied to real systems. Many of the ideas originally discussed
therein apply to other path sampling approaches. Here we briefly highlight the
basics of the original TPS algorithm.

To generate new trajectories, the original versions of TPS employed shooting
and shifting moves. Shooting moves create a new trajectory from an old trajectory
by changing the momentum slightly at a random timeslice t along the previous
trajectory. Then the dynamics are propagated forward and backward in time to
times 0 and T. In a shifting move, a length of time Δt is cut from one end of the
previous trajectory and then the dynamics are propagated from the other end for an
additional time Δt to regain a trajectory of duration T. Most formulations of TPS
use dynamics for the shooting and shifting moves that conserve the ensemble in
which the reaction is being studied. With this choice of dynamics, the acceptance
rule for trajectories from shooting and shifting moves becomes simple: new
trajectories are accepted if they connect states A and B and rejected otherwise.

Shooting moves are described here so that the reader can understand the
differences between the original TPS algorithm and aimless shooting. For the
“shooting” move, the algorithm is as follows:

1. Select a timeslice t along the trajectory randomly, denoted by xt.
2. Perturb the momenta by a vector δp from the original momenta.
3. Propagate the dynamical equations of motion forwards and backwards in

time by some length T/2 in each direction.
4. Accept the new trajectory if it joins the reactant and product states, and

reject the new trajectory if it does not connect the reactant and product
basins.

A shooting move is illustrated in Figure 4, similar to that shown in reference
(18). The size of themomentum perturbation in the shootingmoves, δp, is adjusted
to obtain reasonable acceptance rates of approximately 40-50% as in conventional
Monte Carlo simulation.

For a “shifting” move, the trajectory is translated in time by some adjustable
parameter, δt. This move is analogous to polymer reptation. Shifting moves help
TPS explore trajectory space by enabling a rapidmechanism for relaxation of those
reactive trajectories that barely have time to reach one basin after spending the vast
majority of the trajectory duration in the other basin.
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Figure 4. Examples of shooting moves for TPS. In both panes, the original
trajectory is shown as a dotted line. The new trajectory is shown as a solid line.
(a) Example of an “accepted” trajectory in which the trajectory connects basin
A and basin B. (b) Example of a “rejected” trajectory in which the trajectory

connects basin A to itself.

Applications of the original TPS algorithm to diffusive systems such as
crystal nucleation (67) and protein folding (58, 62) exhibited very low acceptance
rates. The commitment time for these types of rare events is usually on the
nanosecond timescale (or greater) implying a rough free energy landscape from
the top of the free energy barrier to a given basin. This problem has lead to
new developments in the path sampling community to circumvent this problem
including the addition of a weak stochastic element through use of an Andersen
thermostat applied to half trajectories (68), the transition interface sampling
technique (67, 69, 70), shooting moves with submachine precision (71), and
specialized move sets with double ended constraints in the path interior (72). Each
of these methods to improve acceptance in diffusive dynamics uses a strategy
that generates successive trajectories that are highly similar. Since each trajectory
is costly, especially for highly diffusive systems, it is preferable to generate
trajectories that rapidly diverge from each other while maintaining reasonable
acceptance rates. A new method that accomplishes these goals simultaneously,
aimless shooting, is discussed in the next section.

Aimless Shooting

Peters and Trout recently developed a new approach to path sampling, dubbed
aimless shooting, which replaces the shooting and shifting moves from the original
TPS algorithm with a single new type of shooting move. There are several distinct
advantages of aimless shooting over TPS that make it a significant development in
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the field of path sampling. In aimless shooting, the momenta are drawn from the
Boltzmann distribution for each new trajectory; hence the trajectories de-correlate
more quickly in aimless shooting than the conventional TPS shooting moves. In
addition, aimless shooting automatically keeps the system in the transition state
region (more accurately, where pB is near ½, which will be discussed in Section 3),
thus maintaining high acceptance rates. Another advantage is that there is only one
adjustable parameter in the algorithm, Δt. The total length of an aimless shooting
trajectory is (T + Δt) and each trajectory has three segments:

1. a “backward” trajectory from x(t=0) to x(t=–T/2)
2. a “connector” trajectory from x(t=0) to x(t=Δt)
3. a “forward” trajectory from x(t=0) to x(t=Δt + T/2)

These segments are illustrated in Figure 5. To initiate aimless shooting, a
small time interval Δt is chosen such that Δt << T along the initial pathway of
length T. Typically, we have found that Δt = 0.01·T yields favorable acceptance
rates. Along the initial trajectory, a configuration is selected that is close to the
transition state region. This initial configuration is typically found by firing several
randomly seeded trajectories from points along the initial pathway, as discussed
earlier. From here, the aimless shooting algorithm, illustrated in Figure 5, works
as follows:

1. From the previous trajectory, select x(t=0) or x(t=Δt) as the shooting point
with 50% probability for the two choices. Save the shooting point as
xnew(t=0).

2. Draw new velocities from the Boltzmann distribution at the chosen
shooting point.

3. Propagate the dynamics backwards for -T/2, i.e. reverse the momenta and
run a forward trajectory for time T/2.

4. Propagate the dynamics forwards in time by Δt from the shooting point,
and save the configuration, xnew(t=Δt).

5. Continue the forward trajectory for +T/2.
6. Accept the new trajectory if it joins the reactant and product states, and

reject the new trajectory if it does not just as in the original TPS Monte
Carlo-like path action.

An “inconclusive” trajectory is defined as a trajectory in which one or
both ends do not reach a basin. Just as in the original TPS algorithm, frequent
inconclusive trajectories indicate that the trajectory length is insufficient or
that the initial pathway is of poor quality. After the initial iteration of aimless
shooting, shooting points are selected between x(t=0) and x(t=Δt). In this way,
aimless shooting ensures that one point of two from which to shoot will yield
reactive trajectories.

Aimless shooting has some very useful properties. First, each shooting move
generates an independent realization of the committor probability because the
momenta are chosen fresh from the Boltzmann distribution. Second, Peters and
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Figure 5. The aimless shooting algorithm. In both panes, the original trajectory
is shown as a dotted line; the new trajectory is shown as a solid line; the point
chosen along the previous trajectory at x(t=0) is shown as a red dot; and the
point chosen at x(t=Δt) is shown as a blue dot. (a) Example of an “accepted”
trajectory. For the next iteration of aimless shooting, the shooting point is
selected randomly between configurations on the new trajectory at x(t=0) and
x(t=Δt). (b) Example of a rejected trajectory. For the next iteration of aimless
shooting, the shooting point is selected randomly between configurations on
the old trajectory at x(t=0) and x(t=Δt), the latter of which is not shown. (see

color insert)

Trout showed that the shooting points themselves are approximately distributed
according to:

where xsp is configuration of the system at a shooting point (sp), ρ(xsp) is the
distribution of shooting point configurations, p(TP|xsp) is the probability of being
on a transition path given a shooting point configuration, and p(xsp|TP) is the
probability of being at a shooting point configuration given being on a transition
path. This distribution of shooting points is confined to the transition pathway
by the factor p(x|TP). The distribution of shooting points is also confined to the
zone along the transition pathway where the factor p(TP|x) is nonzero. Because
of this property, aimless shooting automatically maintains a high acceptance
probability, even without using small momentum perturbations as in the original
TPS algorithm. Furthermore, the zone where p(TP|x) is large also corresponds to
the transition state region (where pB(x) is near ½ as will be discussed in Section
3). Having many shooting points in the transition state region helps aimless
shooting generate data that will help identify transition states. Figure 6 depicts
the difference between aimless shooting and shooting-shifting strategies for TPS.

310

D
ow

nl
oa

de
d 

by
 D

U
K

E
 U

N
IV

 o
n 

Ju
ne

 2
2,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

14
, 2

01
0 

| d
oi

: 1
0.

10
21

/b
k-

20
10

-1
05

2.
ch

01
3

In Computational Modeling in Lignocellulosic Biofuel Production; Nimlos, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2010. 



Aimless shooting also has advantages for sampling transition paths in
diffusive systems. Aimless shooting has been applied to understand highly
diffusive processes like the nucleation of polymorph transitions in terephthalic
acid (39, 40) and the nucleation of Lennard-Jonesium crystals from the melt
(Beckham and Peters, in preparation). As discussed in the previous sub-section,
several investigators have modified the shooting-shifting algorithm to address
diffusive systems including sub-machine precision momentum perturbations
(71), shooting half-trajectories with a stochastic element (68), and incorporating
specialized moves with double-ended constraints in the interior of the path (72).
These modified path sampling schemes all generate a new trajectory that is
very similar to the old trajectory. By comparison, successive aimless shooting
trajectories rapidly diverge from one another at the shooting point while still
maintaining a high acceptance rate. In summary, aimless shooting is a TPS
method with all of the features of the original method. However, the new aimless
shooting version has these advantages:

1. Each shooting point represents an independent realization of pB, which is
a useful feature for reaction coordinate identification as will be discussed
in Section 3.

2. Shooting points are automatically distributed with 0 < pB < 1 with a
distribution that is peaked near ½. This feature leads to high acceptance,
even for highly diffusive barrier crossing dynamics.

3. Aimless shooting trajectories diverge from each other more rapidly than
those from previous shooting/shifting schemes.

4. Aimless shooting is easily implemented with existing molecular
dynamics packages and has just one adjustable parameter, Δt.

Scripts for the aimless shooting algorithm with extensive comments are
available for download at http://www.engineering.ucsb.edu/~baronp/codes.html.
The aimless shooting scripts are written for implementation on a standard Linux
cluster. A “master” shell script contains the loop over the successive aimless
shooting paths, calls the MD code as a parallel executable, then calls a Fortran
executable to determine the values of the basin definition OPs, performs the
Monte Carlo path action, and saves the appropriate files for subsequent analysis.
Two sets of MD code for the simulation of a terephthalic acid nucleation problem
(39, 40) are available for the shooting moves, written currently for CHARMM
(73) and NAMD (74). A sample Fortran code, also for the terephthalic acid
problem (39, 40) is available, which reads in the output from the MD code. The
scripts are easily altered for other systems of interest and other MD codes.

Comparison of Aimless Shooting to Other Sampling Methods

Several other sampling methods have been proposed for highly diffusive
problems. These include forward flux sampling (75–78), the string method
in collective variables (59), milestoning (79, 80), and transition interface
sampling (69, 70, 81, 82). The efficiency of transition interface sampling and
forward flux sampling decreases when performed with inaccurate coordinates.
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Figure 6. Differences between TPS and AS move sets. The transition state
region is shown in yellow shading. (a) TPS generates shooting points outside
of the transition state region (filled in yellow shading), thus for highly diffusive
processes, the acceptance rates can be very low. (b) Aimless shooting distributes
shooting points confined to the transition state region (filled in yellow shading)
according to the factor p(x|TP), thus demonstrating good acceptance rates, even

for highly diffusive processes. (see color insert)

Sampling procedures involved in the string method and milestoning depends
on pre-identified variables. If the subspace of predetermined variables does not
include the reaction coordinate, the string method and milestoning approaches
may give incorrect results.

3. Finding the Reaction Coordinate from Path Sampling Data

The result from path sampling is an ensemble of trajectories connecting the
reactant and product basins, which is commonly referred to as the transition path
ensemble. In the development of TPS, one of the major research challenges was
to develop an automated way to extract the reaction coordinate from the transition
path ensemble. This section describes three methods, in the chronological order
of development, to find the reaction coordinate from TPS and aimless shooting
data, namely the histogram test, the Genetic Neural Network (GNN) method, and
likelihood maximization. The histogram test, often called a committor analysis,
represents the first method to identify a reaction coordinate, whereas the GNN and
likelihood maximization each made significant advances in efficiency to identify
reaction coordinates.
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pB and the Histogram Test

The committor probability, denoted as pB(x), is the probability that a given
configuration x will commit to the product basin “B” if initiated with a velocity
from the Boltzmann distribution. pB(x) takes the value of 1 for configurations in
the product basin, 0 for configurations in the reactant basin, and ½ for transition
states. Isosurfaces of an accurate physical reaction coordinate, r(x)=constant,
should closely approximate the isocommittor surfaces, pB(x)=constant (18), as
depicted in Figure 7.

The committor probability has long been interpreted as a reaction coordinate
(18, 19, 53, 54, 83, 84). The pB histogram test, also called a committor analysis,
begins with an assumed reaction coordinate q to test and usually with a free energy
calculation to identify the putative transition state location q* along the assumed
coordinate. A Boltzmann distributed sample of atomistic configurations x with
q(x)=q* is harvested by constrained sampling. At each harvested configuration
x, pB(x) is estimated by initiating trajectories from x with Boltzmann distributed
velocities. The fraction of these trajectories that commit to the product basin is an
estimate of pB at that configuration. The pB-estimates from each configuration are
then combined into a histogram of estimated committor probabilities. A putative
transition state surface from an accurate reaction coordinate will give a histogram
that is closely centered on pB=½.

Figure 8 depicts the process involved in the histogram test as it is commonly
performed in the literature (18, 19, 53). A putative reaction coordinate and a
corresponding transition state region is selected. In Figure 8(a), the reaction
coordinate chosen is q2 and a particular value q2* is chosen as the transition state
along q2. Boltzmann distributed points are generated, shown as black circles,
along with the putative transition state surface and multiple trajectories are
fired from each point. As the reaction coordinate chosen in Figure 8(a) is not
representative of the true reaction coordinate, a collection of points will result
in a number of trajectories that reach basin A only (shown in red) and a number
of trajectories that only reach basin B (shown in blue). When plotted as the
fraction of points that reach basin B from any given point, this will result in a
histogram with peaks near pB=0 and pB=1. A histogram of this nature denotes a
poor reaction coordinate choice and that other collective variables are important
components of the reaction coordinate. Alternatively, if the reaction coordinate
is chosen properly as shown in Figure 8(b) where the reaction coordinate is a
function of q1 and q2, trajectories fired from the transition state surface will result
in an approximately equal probability of reaching basin A or basin B from any
given point, thus resulting in a histogram peaked near pB = ½.

As commonly performed in the literature, the histogram test is extremely
expensive because it is an iterative, trial-and-error process. Moreover, the
histogram is only a qualitative measure of reaction coordinate error because
protocol dependent sampling errors add noise to the pB-estimates. Peters
deconvoluted the sampling error in the histogram to quantify the actual error
in the continuous distribution of pB-values on the dividing surface (85). These
distributions are depicted in Figure 9.
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Figure 7. Isosurfaces of an accurate physical reaction coordinate r(x) should
coincide with the location of specific values of the committor probability. In
particular, structures on the dividing surface r(x)=r* should all be transition

states as defined by pB(x)=½. (see color insert)

The mean and variance of the actual committor distribution can be obtained
from the mean and variance of the histogram:

where µH is the histogram mean, σH is the histogram variance, µp is the intrinsic
mean, σp is the intrinsic variance, and N is the number of shooting points per
histogram. These formulas provide a quantitative range of committor probability
values on a predicted transition state surface:

Peters showed that µP and σP can be obtained by a relatively inexpensive
calculation. For reaction coordinates with errors of σP > 0.15, µP and σP can be
estimated to within 10% of their values with 2000 trajectories partitioned among
200 pB-estimates. Thus the quantitative measure of reaction coordinate error is
often more than a factor of ten less expensive than the original committor analysis
procedure.

The Genetic Neural Network Method

The pB histogram test is computationally expensive, especially when the trial
and error approach for finding reaction coordinates requires many iterations of the
histogram test with different putative reaction coordinates (63). The first method
to find the reaction coordinate in a more systematic manner was developed by Ma
and Dinner. Their seminal advance in this area was the Genetic Neural network
(GNN) method for optimizing the reaction coordinate (54). The GNN method
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Figure 8. The pB histogram test. A putative reaction coordinate and
corresponding transition state surface (shown as the dotted red line) are

proposed. Boltzmann distributed points along the putative transition surface are
generated as shown in black circles. Many trajectories are fired from each point
and the fraction of trajectories from each point that reach B are plotted as a
histogram. (a) Example of a poor choice of a reaction coordinate. The points
closer to A result in trajectories (shown in red) that all relax to A. The points
closer to B result in trajectories (shown in blue) that all relax to basin B. The
resulting histogram is therefore peaked close to pB = 0 and pB = 1, denoting a
poor reaction coordinate choice. (b) Example of a judicious choice of reaction
coordinate. The points approximate the transition state surface well so the

histogram is peaked at pB=½, which is indicative of the transition state surface.
(see color insert)

begins with an ensemble of trajectories from TPS. pB(x) estimates are computed
at points along the transition paths and a training set of pB estimates is selected so
that the estimates are evenly distributed with pB values between zero and one. One
and two level perceptron models of the reaction coordinate are constructed from a
database of possible components of the reaction coordinate. A genetic algorithm
sorts through the perceptron models and finds the best model reaction coordinate
by comparing their square error scores. Each score is determined by minimizing
the square error between the computed and perceptron-predicted pB estimates in
the training set, as given by Equation 5 and illustrated in Figure 10.
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Figure 9. The intrinsic committor distribution P(pB) corresponds to the
distribution of infinitely accurate committor probability estimates. Variance
in the distribution P(pB) is entirely due to reaction coordinate error. The

distribution H(pB) corresponds to the distribution of pB-estimates in a histogram.
The histogram has a larger variance because of binomial sampling error in the

pB-estimation process.

The GNN approach of Ma and Dinner provided the first good reaction
coordinate for isomerization of the alanine dipeptide represented by a united
atom model in explicit solvent. GNN’s success for the alanine dipeptide was
remarkable for several reasons. This challenging problem had thwarted all
previous attempts to find a good reaction coordinate using Ramachandran angles
and other internal coordinates. Second, the reaction coordinate identified by
GNN confirmed the suspected importance of solvent dynamics in the mechanism
of this reaction. Specifically, GNN found that the local orientation of solvent
dipoles must preorganize to enable the conformational change. Because the
solvent preorganization occurs on a longer timescale than fluctuations in the
Ramachandran angles, the solvent orientations are an integral part of the reaction
coordinate.

In the original work of Ma and Dinner on the isomerization of the alanine
dipeptide, a training set constructed from 194,700 trajectories gave a coordinate
from GNN that was not extremely accurate. Later work suggests that this is
primarily due to missing coordinates in the set of candidate order parameters (31).
However our subsequent analysis demonstrates that pB-estimates and square error
scoring as used by GNN make inherently less efficient use of trajectory data than
likelihood maximization (51).

Likelihood Maximization

Peters and Trout introduced the method of likelihood maximization to obtain
reaction coordinates from path sampling data (52). Likelihood maximization is
an information theory-based approach in which a large set of putative reaction
coordinates are exhaustively tested to fit to the reaction coordinate, given by
the committor function, pB(r(x)). It is different from the previous methods for
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Figure 10. The Genetic Neural Network method uses one and two level
perceptron models (g1 and g2) based on possible components of the reaction

coordinate (q1…qN) to fit a model for the reaction coordinate (pM) to pB estimates
from the transition path ensemble.

Figure 11. Likelihood maximization is designed to extract the best approximation
to the reaction coordinate from the transition path ensemble collected by aimless
shooting. (a) Forward-trajectory outcomes for points on a free energy surface
between A and B, colored by outcome. Blue points relax to basin A and red
points relax to basin B. The transition state region is located at the “interface”
where the shooting point outcomes switch from relaxing to basin A to relaxing
to basin B. (b) The committor probability function, pB(r), is a function of the

model reaction coordinate, r, that fits the shooting point data. All model reaction
coordinates can be shifted so that the value r = 0 marks the transition state

location. (see color insert)

identifying reaction coordinates, which rely on committor probability estimates.
Instead, the likelihood maximization approach is the first to use a rigorous
probabilistic framework based on realizations of a committor probability. We
stress that pB realizations are different from pB estimates. To that end, likelihood
maximization makes efficient use of the information collected during aimless
shooting, wherein each trajectory is an independent realization of the committor
probability. The concept of the technique is illustrated in Figure 11.
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Table 1. Scheme for likelihood maximization. The shooting points are
collected with the outcomes in the forward direction and candidate OP

values at each point

Shooting point Forward outcome Candidate order parameter values

x1 B q1(x1) q2(x1) q3(x1) … qN(x1)

x2 A q1(x1) q2(x1) q3(x1) … qN(x1)

x3 A q1(x1) q2(x1) q3(x1) … qN(x1)

… … …

xn B q1(x1) q2(x1) q3(x1) … qN(x1)

Likelihood maximization is designed to infer the reaction coordinate from
shooting points that relax to A and those that relax to B (or the “length” of the
arrow in Figure 11). In addition, the reaction coordinate can be a function of
multiple OPs, and likelihood maximization will extract the best approximation
from a candidate list of variables (the “direction” of the vector in Figure 11).

In the first iteration of the likelihood maximization method, Peters and
Trout recognized that for a good reaction coordinate, denoted here as r(x), the
probability of being on a transition path, p(TP|x) depends only on the reaction
coordinate. Therefore, the method introduced in the first study describing
likelihood maximization is based on finding the function p(TP|r(x)) that can best
explain p(TP|x) (52). It was later realized that fitting the reaction coordinate to
p(TP|x) shifts the reaction coordinate to fit the tails of p(TP|x) at the expense of
accuracy in the transition state region (51). In a subsequent study, the likelihood
maximization method was improved by fitting the reaction coordinate from the
shooting point outcomes to the probability of reaching basin B from a given
configuration, or pB(x), the committor probability function described above
(51). The likelihood maximization method based on pB only uses the forward
trajectory outcomes because when the dynamics are not completely diffusive,
the forward and backward outcomes at shooting points may be (negatively)
correlated. Likelihood maximization as presented in this review and the paper by
Peters, Beckham, and Trout (51) are appropriate for both ballistic and diffusive
dynamics.

Likelihood maximization works as follows: a transition path ensemble is
collected with aimless shooting. During aimless shooting the basin outcome of
each forward shooting point is saved (regardless of whether the shooting move is
accepted or rejected), and the shooting point configurations are also saved. A list
of order parameters that may be part of the reaction coordinate is generated based
on the configurations at the shooting points, given by q1…qN. This results in a data
file with one row for each of the n shooting points as shown in Table 1.

The data are used to optimize models of the committor probability. The one
constraint is that the committor probability should approach zero at small values of
the reaction coordinate and it should approach one for large values of the reaction
coordinate. We use a single-level perceptron:
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More flexible models like the multilevel neurons of Ma and Dinner may be
needed in some cases. In the single level perceptron models, the argument of the
tanh function should be some monotonic function of the candidate OPs. In the
simplest case, r(q) may be a linear combination of M OPs as follows:

The linear combination model is actually quite flexible because the OPs
themselves may be nonlinear combinations of other OPs. If the model reaction
coordinate given by Equations 6 and 7 is correct, then the likelihood of observing
the data in the table is:

The notation in Equation 8, xk→B denotes a product over all shooting points
(xk) that result in trajectories that reach basin B and vice versa for xk→A. The
coefficients in the model reaction coordinate of Equation 7 are varied to maximize
the log likelihood score in Equation 8. This maximization is performed for each
combination of proposed OPs up to models of the reaction coordinate with M
component OPs. The resulting reaction coordinatemodels given by r(q) are ranked
in terms of their respective log likelihood scores. For all models with a specific
number of component variables,M in Expression 7, the reaction coordinate model
with the maximum likelihood score is the best model. When comparing models
with different numbers of component variables, it should be remembered that the
models also have different numbers of fitting coefficients. The best model with
M+1 component variables will always have a higher likelihood score than the
best model with M component variables. However, the improvement may not be
physically significant. Peters and Trout proposed using the Bayesian Information
Criterion (BIC) to decide whether an improvement was significant. The BIC is
given by ½ln(N) where N is the number of trajectories collected with aimless
shooting. If the difference in two likelihood scores for two reaction coordinate
models is much greater than the BIC, the model with an additional component
variable is a physically significant improvement. The BIC test is thus useful to
determine the number of component OPs (M in Expression 7) that are necessary
to describe the reaction coordinate.

Following likelihood maximization, the quality of the data as fit to the
committor probability function given in Equation 6 can be assessed by plotting
the committor function with the data, as illustrated in Figure 12. For the “data” in
Figure 12, the reaction coordinate is separated into reasonably sized bins, and the
ratio of trajectories that reach B from a given bin is divided by the total number
of trajectories from that bin. The “model” curve is simply the function given by
Equation 6. The error bars are on the “model” and are from the binomial standard
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Figure 12. The committor probability function given by Equation 6 (“model”,
shown in red) and the data from the transition path ensemble collected with
aimless shooting (“data”, shown in blue). This curve is used to determine the
quality of the reaction coordinate approximation from likelihood maximization.

(see color insert)

deviations based on the mean in each bin: [µ(1-µ)/n]1/2 as described in Peters et
al. (51).

Agreement between the model and the aimless shooting data as shown in
Figure 12 is a necessary, but not sufficient, test for successful identification of
an accurate coordinate. To ensure that likelihood maximization has identified an
appropriate reaction coordinate, the predicted reaction coordinate should still be
subjected to a histogram test. This is necessary because the aimless shooting data
are harvested from the distribution of equation (5), i.e. from a p(TP|x)-weighted
transition path ensemble and not from the equilibrium ensemble. By contrast,
the committor probability distribution on a reaction coordinate isosurface is the
distribution of committor probabilities from an equilibrium distribution of states
on the reaction coordinate isosurface. Thus, aimless shooting and likelihood
maximization may identify a coordinate that accurately describes dynamics
along the reaction channel, but fails to separate this motion from excursions into
an off pathway branch of the stable basin A. Problems like this have not been
encountered in any of the previous applications of likelihood maximization (30,
39, 40, 51, 52), but Figure 13 provides a schematic illustration of this possibility.

The example in Figure 13 illustrates why the final reaction coordinate should
still be rigorously tested for accuracy. The quantitative version of committor
analysis developed by Peters (85) can reduce the computational demands of this
final step in identifying an accurate reaction coordinate.

A C code written for the likelihood maximization step is available for
download at http://www.engineering.ucsb.edu/~baronp/codes.html. The script is
written to take a text file input with shooting point outcomes and values of the
candidate OPs at each shooting point. Instructions on how to use the code are
included in the distribution. The applications for the likelihood maximization
code are in references (39, 40).
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Figure 13. For a free energy landscape such as this, aimless shooting points will
be located in the zone that is colored yellow. Near the yellow zone, the reaction
coordinate isosurfaces from likelihood maximization are a good approximation
to the true isocommittor surfaces. However, the reaction coordinate may be
inaccurate in regions of the reactant basin that were not visited during aimless
shooting. In this case, a constrained equilibrium simulation on the predicted
pB=½ surface would visit many points that are actually committed to the A

basin (the blue region). Even though the reaction coordinate appears accurate
according to the test in Figure 12, the histogram for this coordinate would be

peaked at pB=0 instead of pB=½. (see color insert)

Other Methods To Find Reaction Coordinates

Two other methods have been reported for identifying reaction coordinates
from path sampling data. Antoniou and Schwartz (86) and also Best and Hummer
(87, 88) have proposed methods to optimize the parameterization of the separatrix
(pB=1/2). We note that an accurate description of the pB=1/2 surface is a necessary
but not sufficient condition to ensure an accurate reaction coordinate. Coordinates
having one isosurface that parameterizes the separatrix may still poorly describe
earlier and later stages of the reaction progress. Errors at later and earlier stages can
lead to hysteresis problems in free energy calculations and inaccurate dynamical
models for motion along the reaction pathway. Thus, the methods of Antoniou
and Schwartz (86) and Best and Hummer (87, 88) are less robust and general than
GNN and Likelihood Maximization approaches.

4. Calculating the Free Energy from a Known Reaction
Coordinate

As described in the previous sections, careful identification of the reaction
coordinate is essential to obtain accurate free energy barriers and meaningful
kinetics of a rare event. Once the reaction coordinate is verified, there are many
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Figure 14. Illustration of the equilibrium path sampling method. The panes show
a window region, R, in which EPS is being conducted. The previous trajectory is
shown in both panes as a dotted line. The starting point for both trajectories is a
random frame along the previous trajectory, labeled in red. (a) Example of an
accepted trajectory. Several points along the trajectory are in the window. (b)
Example of a rejected trajectory that never visited the region R. (see color insert)

methods available to calculate the free energy barrier with a known reaction
coordinate including umbrella sampling (65, 89), blue moon sampling (90),
lambda dynamics (91), metadynamics (92), the finite-temperature string method
(59), adaptive umbrella sampling (93), hyperdynamics (94), single-point hybrid
MC-MD (57), BOLAS (56), Wang-Landau sampling (95), and nonequilibrium
methods (96).

Of particular note to calculate free energy barriers is the transition path theory
(TPT) of Vanden-Eijnden and co-workers (3, 97, 98). The TPT theory provides
a framework for computing both isocommittor surfaces and the current field in a
reaction pathway. However, TPT does require the component variables of the
reaction coordinate as an input to the theory. Thus, TPT is not an alternative
procedure to identify reaction coordinates, except in cases where the component
variables in the reaction coordinate are obvious. Instead, TPT should be viewed
as a rigorous formalism for studying reaction dynamics once aimless shooting
and likelihood maximization or the GNN method has identified the important
collective variables.

Here we describe a variation on the BOLAS method for computing free
energies by path sampling (56), originally developed by Radhakrishnan and
Schlick. As described in Peters et al. (55), the name equilibrium path sampling
(EPS) has been proposed to clarify some confusion over the distribution of paths
that the BOLAS algorithm generates. BOLAS and EPS combine the features of
Monte Carlo umbrella sampling with features from path sampling. Both methods
are useful for computing the potential of mean force (PMF) along a reaction
coordinate that is not easily differentiable. CHARMM, NAMD, and other
packages provide many methods for computing a PMF along simple coordinates
like distances, angles, dihedrals, and functions of these quantities, but not for
computing a PMF along a non-differentiable coordinate. Aimless shooting and
likelihood maximization frequently identify complex collective coordinates that
are not easily differentiated. Thus BOLAS and EPS provide a way to use even
the most complex reaction coordinates that are identified by aimless shooting and
likelihood maximization.
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The following discussion of EPS assumes some familiarity with the MD
umbrella sampling technique, which is briefly discussed here. In umbrella
sampling, multiple windows along a reaction coordinate are specified and a
harmonic restraint is placed on a reaction coordinate value at the center of the
window. MD simulations are run in each window along the reaction coordinate
with the restraint active. The potential of mean force (the reversible work) is
calculated from the negative natural log of the resulting probability distribution of
the system in each window. The weighted histogram analysis method (WHAM)
is used to match up the overlapping portions of the windows (99). For more
details, see references (65, 89), and (99).

The algorithm for EPS is as follows: from a known reaction coordinate r,
windows are specified, denoted by R. The configurations are denoted by x.

1. Select one of (k + 1)-timeslices on the previous trajectory: x(o)(0Δt),
x(o)(1Δt)… x(o)(kΔt).

2. Select a random integer j between 0 and k. Let the point selected in step
(1) be timeslice jΔt on a new trajectory: x(n)(jΔt)

3. Draw momenta p from the Boltzmann distribution and propagate the
dynamical equations forward in time from x(n)(jΔt) to x(n)(kΔt). Also
reverse the initial momenta p and propagate the dynamical equations of
motion back in time to x(n)(0Δt).

4. Accept the new trajectory x(n)(0Δt), x(n)(1Δt)… x(n)(kΔt) if any timeslice
is in R. Reject the trajectory if all of the timeslices are outside of R.

This methodology is illustrated in Figure 14. In Figure 14(a), an example
of an accepted trajectory is shown (as a solid line) that is started from a random
frame of the previous trajectory (labeled in red). Figure 14(b) shows a trajectory
started outside of the window region R, which does not enter the window. This
trajectory would be rejected and the previous trajectory would be counted again in
the probability distribution along the appropriate reaction coordinate.

As discussed in reference (55), many points will extend beyond the window
R. However, these points are not distributed according to the equilibrium
distribution. To remedy this, as in umbrella sampling, window regions should
be selected such that windows overlap. From there, WHAM (99) can be used
to connect the resulting free energy distributions between windows. In addition,
the length of trajectories used in previous applications of EPS is quite short. As
with umbrella sampling, the trajectory length and the window width should be
adjusted to achieve good convergence and sampling efficiency. For our previous
applications, we estimate the diffusion time of the system along the verified
reaction coordinate in a given window size, then use this characteristic diffusion
time as our trajectory length. Specifically for windows along methane hopping
from different hydrate clathrate cages, the window length was 0.1 ps (55) and 0.5
ps for a small processive enzyme diffusing on a hydrophobic surface (100).

A C code written for EPS as conducted in reference (55) is available for
download at http://www.engineering.ucsb.edu/~baronp/codes.html. Additional
scripts written to resemble the aimless shooting code for EPS are also available
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for implementation in CHARMM for nucleation in the Lennard-Jones system
(Beckham and Peters, in preparation).

5. From Accurate Reaction Coordinate to the Rate Constant

The advantages of identifying a reaction coordinate for computing rate
constants are outlined in a paper by Hillier et al. (101). They compared the TPS
procedure for computing a reaction rate without any knowledge of the reaction
coordinate (16, 17) to methods for computing the reaction rate from a PMF along
the reaction coordinate. Using a reaction coordinate was 27.5 times faster than
the approach outlined in references (16, 17). By providing a coordinate that
accurately projects the high dimensional barrier crossing dynamics onto a single
coordinate, aimless shooting and likelihood maximization enable simpler and
more accurate calculations of reaction rates.

The Transition State Theory Rate

Many prevalent rate theories are formulated as corrections to the transition
state theory (TST) rate constant. For elementary reaction steps that break and
make strong bonds, TST rate constants are often quite accurate. The lengths of the
bonds being broken and formed are often sufficient components of the reaction
coordinate for these reactions (102, 103). Only a few atoms move significantly in
crossing the barrier, and these move over distances of just a few Angstroms. Thus,
friction between motion along the reaction coordinate and the bath modes tends
to be sufficiently weak that the initial barrier crossing occurs successfully. Then,
for a high barrier corresponding to strong bond breaking, even weak friction can
dissipate enough of the large amount of energy in the reaction coordinate to prevent
an energy-diffusion limit type barrier recrossing. Thus TST for the breaking of
strong bonds, even in enzymes, tends to be a good approximation (104, 105). To
our knowledge the energy diffusion limit has not been encountered for reactions
in biological systems.

Enzymatic bond-breaking and bond-making reactions are extremely
important for biomass conversion, but excellent reviews have been given
elsewhere (105–107). Instead, we focus on methods for reactions with
greater friction for motion along the reaction coordinate. Examples include
conformational and allosteric transitions of biomolecules, competitive binding
steps that expel water from a hydrophobic surface or from an enzyme active
site, and reactions that involve desolvation like sugar recombination reactions in
solution and cellulase processivity initiation.

In the intermediate and high friction regimes TST can be formulated in terms
of the square root of ωA2, the force constant for (undamped) motion along the
reaction coordinate in the reactant basin and in terms of the free energy difference
between the transition state and the reactant minimum
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where xA is the fraction of time the system spends in the reactant state when the
reactant and product are inter-converting at equilibrium.

Reaction Rates with Intermediate Friction

For intermediate values of friction along the reaction coordinate, one could
make direct use of Kramers theory to estimate a rate constant. However, the
Bennett-Chandler method (108, 109) is a practical strategy that incorporates the
real dynamical sources of friction that are being modeled by the “friction” in the
Kramers’ picture. The Bennett-Chandler method correlates the flux through the
dividing surface at the initial moment of crossing with the probability that the
initial trajectories remain in the product state some time later. The reactive flux
approaches the TST flux at the initial time t=0, and decays to a plateau as the
velocity along the reaction coordinate relaxes from the initial condition. When
normalized by the TST flux, the reactive flux correlation function decays from a
value of 1 at t=0 to a value of κ at the plateau.

For extremely long times, i.e. the timescale between reaction events, the
reactive flux correlation function decays to zero. The plateau value is the
transmission coefficient, which is a dynamical correction to the rate constant:

The transmission coefficient also serves as a correction to the rate constant
for reaction coordinate error, but as the reaction coordinate error becomes large,
the transmission coefficient often becomes too small to compute (110). Because
the efficiency of a transmission coefficient calculation is directly influenced by the
accuracy of the reaction coordinate, aimless shooting and likelihood maximization
can facilitate rate constant calculations for reactions with intermediate friction.

Figure 15 shows the free energy surface for methane hopping between a donor
and an acceptor cage in a methane hydrate, as described in detail in reference
(55). The dividing surface is shown as a heavy black curve on the free energy
surface. The dividing surface location was chosen because of a broad shallow
intermediate between the acceptor and donor states. Note the dividing surface in
this case is not at pB=½. In some cases, the optimal dividing surface is not the
pB=½ surface, but another isosurface of the committor probability. In this case the
pB=½ surface is within the shallow intermediate basin. A dividing surface at the
plane of symmetry (which must be the pB=½ surface) would result in a very low
transmission coefficient. The mistaken view that optimal dividing surfaces must
rigidly be identified with the pB=½ surface is a common source of confusion. We
emphasize this example to show that a good reaction coordinate may indeed give
a pB=½ surface that is not an optimal dividing surface for application of transition
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Figure 15. Free energy surface for methane molecule hopping between 2 cages
of a methane hydrate. The black line denotes the chosen dividing surface used to
calculate the rate constant, which is not at pB=½ because of the broad shallow
basin around pB=½, which would yield a very low transmission coefficient, κ.

Results taken from reference (55). (see color insert)

state theory or for computing a transmission coefficient. In this case the dividing
surface we have chosen corresponds to pB=0.65.

Figure 16 shows the reactive flux correlation function with a plateau that
gives a transmission coefficient of κ=0.3. The surrounding water molecules exert
friction on the methane molecule leading to the small transmission coefficient, κ.
Figure 17 shows the evolution of a swarm of trajectories initiated from the dividing
surface at t=0. The dynamics of the swarm exactly corresponds to the free energy
surface, behavior that can only be expected for accurate reaction coordinates.

Reaction Rates within the High Friction Limit

For biological systems involving conformational changes of solvated
macromolecules, the dynamics along a reaction coordinate are likely to fall in the
intermediate to high friction Kramers regime (30, 68, 111, 112). The discussion
below will show that Kramers’ theory in the high friction limit is remarkably
simple when a one-dimensional reaction coordinate can be identified. Now with
methods like GNN and likelihood maximization this first step is feasible.

As the friction becomes very high, the transmission coefficient decreases,
and the reactive flux correlation function becomes difficult to calculate accurately
(110). Thus for the very high friction regime, a better strategy is to compute a
diffusivity for motion along the reaction coordinate. The diffusivity is related to
the friction by the Einstein relation, D = kT/γ, but the friction itself is difficult to
obtain. A more practical strategy is to compute the mean squared displacement
along the reaction coordinate from an initial condition.

The duration of trajectories launched from the top of the barrier to calculateD
must be carefully chosen. In particular, the duration should be longer than the short
time Ornstein-Uhlenbeck ballistic behavior of the mean squared displacement, but
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Figure 16. The reactive flux correlation function exhibits a plateau corresponding
to the correction factor to the TST rate constant given in Equation 12. Results

taken from reference (55). (see color insert)

Figure 17. Swarms of trajectories initiated from the dividing surface shown in
Figure 15. The resulting endpoints at t=2 ps correspond to the results from the
free energy surface above. For more details, see reference (55). (see color insert)

shorter than the time for trajectories to fall significantly from the barrier top. When
used within these bounds, Equation 13 provides a simple alternative to methods for
computing small transmission coefficients. For very high friction where velocity
correlations decay long before the trajectory has left the top of the barrier, the rate
constant is:

Equations 13 and 14 clearly show how accurate 1-D reaction coordinates can
help relate simulations of activated processes to experimental kinetics. Once an
accurate 1-D reaction coordinate is identified, computing rate constants is reduced
to computing the free energy profile, estimating a single diffusion constant along
the reaction coordinate, and straightforward quadrature.
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6. Summary and Outlook
One of the longstanding promises of molecular simulation is to enable

rational design of more effective catalysts and inhibitors by providing molecular
level, mechanistic insight into rare events. Determining the reaction coordinate
accurately without prior assumptions that may lead to erroneous rate predictions
or erroneous insights about the mechanism is an essential first step in using
simulations to understand kinetics.

To that end, this review outlines advances in methods to find reaction
coordinates from path sampling approaches. Specifically we detailed the aimless
shooting approach, which improves on the original transition path sampling
algorithm for applications in highly diffusive systems because diffusive dynamics
are probable characteristics of many biological and solvated systems. We also
discussed the likelihood maximization approach for identifying accurate reaction
coordinates from many candidate variables. Equilibrium path sampling and
BOLAS free energy methods were discussed as methods to compute the potential
of mean force even for coordinates that are not easily differentiated. The path
sampling based free energy calculations enable us to make use of highly complex
order parameters that may be identified in searching for an accurate reaction
coordinate. In kinetic studies of rare events, we expect that these methods and
further improvements on these methods will enable determination of accurate
reaction coordinates and more accurate rate calculations. In the field of biomass
conversion, we expect that the methods described here will form an integral
part of the computational toolkit to characterize the molecular-level mechanisms
occurring in the construction and degradation of the plant cell wall in both natural
and engineered systems.
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CbhA, 80f
Cel9A, 80f
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CBM, 106f
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CipA, 84f
dockerin complex, 64
crystal structure, 67f
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coupling, 257, 258, 259

temporal, 263f, 266f
Computational fluid dynamics
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models, 284, 287, 287t
numerical experiments, 282
process design and optimization, 281
reactor scale-up, 283
realistic configurations, 285

Crystal structure reorganization
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hydrogen bonds, 34f
structures, 33f

diagonal crystal and DP 40 crystals, ten
ns simulations
CSFF, 35f, 36f

GLYCAM06, 36f
heating and equilibration period, 35f
Iβ crystals, 36f

hydrogen bond patterns, 32f
CSFF
crystal structure reorganization, 35f
one ns simulation, 31
ten ns simulations, 35f

DP 40, 36-chain crystal, 37f, 42f
force field, 24f, 26f, 41f
cellobiose, 28f, 28t
cellobiose hydroxymethyl, 26f

hydrogen bonds, 43f
methanol dimer hydrogen, 45f

CWM. See Compound wavelet matrix
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Cystine, 110f
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Deglycosylation
B. agaradhaerens Cel5A, 149, 149f, 151f

β-D-glucopyranose-gg, 187f
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Dihedrals
anisole, 63f
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Discrete particle model, simulation, 280f
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CSFF force field, 47f
twist, 46f

DP 40, 36-chain crystal
CSFF, 42f, 43f
GLYCAM06, 42f, 43f
glycosidic linkages, 37f, 39f
twist, 46f

DP 40, 16-chains crystal
CSFF force field, 47f
twist, 46f

DPM. See Discrete particle model

E

Endoglucanase, 56, 76, 78, 84, 120, 136,
137t

Enzymes
cellulose, hydrolysis, 137t
reaction mechanism, 136, 139f
substrates, action, 135

EPS. See Equilibrium path sampling
Equilibrium path sampling, 322f
Ethylene glycol, 207f
Evans-Polanyi plot, 221f
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F
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atomistic model, 106f
CBH I, 108f, 109, 110f, 113f
CBH II, 109, 110f
cellulose surface, translation, 107
coarse-grained model, 111
molecular dynamics simulation, 108f

Family 48 enzyme, 141f
Fluidized-bed reactor, 249f, 276f, 278f
Free energy
B. agaradhaerens Cel5A, 151f
basins, 302f, 303f
calculations, 123
CBH1 linker and cellulose surface, 128f,
129f, 130f

Ciccotti’s method, 124
cohesin-dockerin dissociation, 68, 69f
deglycosylation, 151f
landscape, 68
methane hydrate, 326f, 327f
reaction coordinate, 300, 302f, 321
umbrella sampling, 125

G

Gasification and pyrolysis, 273
Gas-phase elimination of water from
alcohols
bond dissociation energies, 222t
Evans-Polanyi plot, 221f
rate rules, 216, 229
development, 219
lower levels of theory, performance,
226

transferability, 222
unimolecular rate constants, 220f

Gas velocity vectors
biomass mass distribution, 252f
void fraction, 252f

Genetic Neural Network method, 314, 317f
GH9. See 9 Glycosyl hydrolase and
cellotetraose

GLYCAM06
crystal structure reorganization, 36f
force field, 24f, 26f, 27f, 28f, 28t
simulations, 46f
twist of cellulose fibrils, 46f

Glycoside hydrolases, 142
Glycosidic bond hydrolysis

inverting mechanism, 139f
retaining mechanism, 139f

Glycosidic linkages
DP 40, 36-chain crystals, 37f
CSFF, 39f
GLYCAM06, 39f

Glycosylation
CBH I, 122f
H. grisea Cel12A, 147f, 148f

9 Glycosyl hydrolase and cellotetraose, 80f
GNN method. See Genetic neural network
method
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H

H abstraction reactions
alcohol, 211f
C-H bond, 209, 213f, 214, 216f, 220f
CH3 radicals, 208, 217f, 218f, 219f,
220f

H atoms, 208, 209, 211f, 219f
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rate rules, 208
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CBS-4M, 238f
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1,3-H shift, 238f
1,5-H shift, 238f
rate constants, 238f

Humicola grisea Cel12A
cellotetraose, 145f
glycosylation, 147f, 148f
Michaelis complex, 147f
QM/MM simulations, 146

Hydrogen bond
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CSFF 10 ns simulations, 36f
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models, 63
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MC simulations. See Monte Carlo
simulations
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simulations
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326f

Methanol dimer
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CSFF, 45f
GLYCAM06, 45f
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interaction energy, 44f
Modeling cellulosomes, 64
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Molecular dynamics simulations
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CBM1, 108f, 112f
cellulosome, 92
Ig-Gh9, 93f, 95f
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QM/MM, 164
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molecular dynamics simulations, 92
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277

gas phase coupling, 280
hydrodynamics, 277
reactive particles, 281
solid phase description, 277

Path sampling
accurate reaction coordinate, 299
algorithms, 304
aimless shooting methods, 308, 310f,
311

basin definitions, 305
initial pathways, 305
transition path sampling, 307

reaction coordinate, 321
Genetic neural network method, 314,
317f

likelihood maximization, 316, 317f,
318t, 320f, 321f

pB histogram test, 313, 315f, 316f
reaction coordinates, 299
transition, 302

pB histogram test, 313, 315f, 316f
p-Coumaryl, 59f
PES. See Potential energy surfaces
Phenethyl phenyl ether
Arrhenius rate expressions, 239t
decomposition, 234f

PHP. See p-Hydroxyphenyl
p-Hydroxyphenyl, 59f, 65f
Plant cell wall
cellulose, 66t
lignin, 66t
polysaccharides, 99

Polysaccharides, 99
Potential energy surfaces
phenyl vinylethyl ether, 236f
vinyl vinylethyl ether, 236f

PPE. See Phenethyl phenyl ether
Product gas mass fraction, 255f
Pyrolysis, 273

Q

QM/MM. See Quantum mechanical/
molecular mechanical

Quantum mechanical methodology, 180
sugar thermochemistry
balanced equations, 185
composite methods, 181
homodesmotic reactions, 185

Quantum mechanical/molecular
mechanical
analysis
cellulase active sites, 135
enzymes on substrates, actions, 135
model setups, 144

free energy simulation, 151f
molecular simulation methods, 135
simulation, 148f
Cel5A, 146
glycosylation, 146
H. grisea Cell12A, 146

R

Rate rules
gas-phase elimination of water from
alcohols, 216

H abstraction reactions, 216
RDA. See Retro-Diels-Alder
Reaction coordinate
free energy, 300, 302f, 303f, 314f, 321
isosurfaces, 314f
path sampling, 299, 312
rate constant
high friction limit, 326
intermediate friction, 325
methane hydrate, 326f, 327f
transition state theory, 324, 327f

Retaining mechanism, 139f
Retro-Diels-Alder
cyclohexene, 234f
rate constants, 234f
reactions, 230

S

Scaffoldin molecule and cellulosomal
enzymes, 87f

Serine, 122f
Simulations
atomic
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associated cellulosomal protein
complexes, 55

lignocellulosic biomass, 55
Cel9A, 95f
cellulose, structure, 17
molecular methods, 155

Sinapyl, 59f
Stoddart’s diagram and beta-glucose, 141f
Sugar
extension, 187, 189f
ring
distortion, 140
subsite -1, conformational changes,
143f

thermochemistry
derived thermodynamic data, 195t
quantum mechanical modeling, 179

T

Tar gas mass fraction, 255f
Thermal conversion of biomass
calculation methodology
electronic structure calculations, 204
rate expressions, 206
thermodynamic properties, 205

first principle methods, 201
kinetic models, 201
rate estimation rules, 201
See also Biomass

Thermodynamic data
computation and literature, 195t
derived, 195t

Theronine, 122f
Time-parallel compound wavelet matrix
method, biomass thermochemical
conversion, 262, 263, 266f, 267

Time parallel method, 263f
tpCWM. See Time-parallel compound
wavelet matrix method

TP method. See Time parallel method

TPS. See Transition path sampling
Transition path sampling, 302, 308f, 312f
Transition state theory rate, 324, 327f
TST rate. See Transition state theory rate
Twist
cellulose fibrils
CSFF diagonal crystal, 40f
GLYCAM06 simulations, 46f

Tyrosine, 110f

U

Unit cell
cellulose Iβ crystal, 30f
small-molecule-dimer, 66t

V

Vinyl vinylethyl ether, 236f
Void fraction with gas velocity vectors,
252f

W

Water:anisole-dimer, 62t
Water elimination from alcohols
B3LYP/6-31G, 230f
B3LYP/6-31G(d), 227f, 228f
bond dissociation energies, 222t
CBS-4M, 227f, 228f, 230f
CBS-QB3
data, 228f
level, 230f

rate constants, 227f, 228f, 232f
B3LYP/6-31G, 227f
CBS-4M levels of theory, 227f
TST, 227f

Water:lignin-dimer, 62t
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